L(s) = 1 | + 8·5-s + 3·9-s + 12·13-s − 8·17-s + 38·25-s − 8·29-s − 2·37-s − 10·41-s + 24·45-s − 5·49-s + 10·53-s − 20·61-s + 96·65-s + 6·73-s − 64·85-s − 4·89-s − 12·97-s − 10·101-s − 12·109-s + 8·113-s + 36·117-s − 13·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 3.57·5-s + 9-s + 3.32·13-s − 1.94·17-s + 38/5·25-s − 1.48·29-s − 0.328·37-s − 1.56·41-s + 3.57·45-s − 5/7·49-s + 1.37·53-s − 2.56·61-s + 11.9·65-s + 0.702·73-s − 6.94·85-s − 0.423·89-s − 1.21·97-s − 0.995·101-s − 1.14·109-s + 0.752·113-s + 3.32·117-s − 1.18·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.974154499\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.974154499\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.171116173413720852515064409422, −7.27498861153339197087765218331, −6.70215534378769498619674725507, −6.43518047637612164386054425282, −6.37130663081964170851026344460, −5.77142731733412237415577053303, −5.50386762915442186383450566417, −5.07368852733938728543400465493, −4.35244050864138721227666504237, −3.89119998683865980446546080420, −3.20217122267469588133159845598, −2.54151943185940669283450208208, −1.80714683000640168781195911291, −1.64599982063715737449109612262, −1.25838069591403157091036114514,
1.25838069591403157091036114514, 1.64599982063715737449109612262, 1.80714683000640168781195911291, 2.54151943185940669283450208208, 3.20217122267469588133159845598, 3.89119998683865980446546080420, 4.35244050864138721227666504237, 5.07368852733938728543400465493, 5.50386762915442186383450566417, 5.77142731733412237415577053303, 6.37130663081964170851026344460, 6.43518047637612164386054425282, 6.70215534378769498619674725507, 7.27498861153339197087765218331, 8.171116173413720852515064409422