| L(s) = 1 | + 5-s + 9-s + 2·13-s − 8·17-s − 4·25-s − 8·29-s − 6·37-s + 8·41-s + 45-s − 5·49-s − 4·53-s + 16·61-s + 2·65-s + 4·73-s − 8·81-s − 8·85-s − 8·89-s + 8·97-s + 8·101-s − 4·109-s − 8·113-s + 2·117-s + 10·121-s − 9·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | + 0.447·5-s + 1/3·9-s + 0.554·13-s − 1.94·17-s − 4/5·25-s − 1.48·29-s − 0.986·37-s + 1.24·41-s + 0.149·45-s − 5/7·49-s − 0.549·53-s + 2.04·61-s + 0.248·65-s + 0.468·73-s − 8/9·81-s − 0.867·85-s − 0.847·89-s + 0.812·97-s + 0.796·101-s − 0.383·109-s − 0.752·113-s + 0.184·117-s + 0.909·121-s − 0.804·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.338553307682856225092429230097, −7.72401215098394316857960919575, −7.37449108338009914548985271184, −6.74384923569213766673040293169, −6.52934913265744683166783372535, −5.91688522438786436179622418389, −5.54240242707092290283292706737, −4.94372464004930938010012196924, −4.39841261775256014566678615225, −3.87678172706588344530134946452, −3.47479905070959796311599606877, −2.46169005466521813800561678226, −2.10713778030478682210019930684, −1.35721597720795742844838032124, 0,
1.35721597720795742844838032124, 2.10713778030478682210019930684, 2.46169005466521813800561678226, 3.47479905070959796311599606877, 3.87678172706588344530134946452, 4.39841261775256014566678615225, 4.94372464004930938010012196924, 5.54240242707092290283292706737, 5.91688522438786436179622418389, 6.52934913265744683166783372535, 6.74384923569213766673040293169, 7.37449108338009914548985271184, 7.72401215098394316857960919575, 8.338553307682856225092429230097