L(s) = 1 | − 5·7-s + 15·19-s + 5·25-s + 15·31-s − 10·37-s − 10·43-s + 18·49-s − 27·61-s + 16·67-s + 3·73-s + 4·79-s − 6·103-s + 17·109-s − 11·121-s + 127-s + 131-s − 75·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s − 25·175-s + ⋯ |
L(s) = 1 | − 1.88·7-s + 3.44·19-s + 25-s + 2.69·31-s − 1.64·37-s − 1.52·43-s + 18/7·49-s − 3.45·61-s + 1.95·67-s + 0.351·73-s + 0.450·79-s − 0.591·103-s + 1.62·109-s − 121-s + 0.0887·127-s + 0.0873·131-s − 6.50·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s − 1.88·175-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.551076189\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.551076189\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27433520192045755536409980540, −10.17982268855402945013562671045, −9.652152822443171192462220552798, −9.417328076287409178368212643355, −8.998087384106584395900630749474, −8.513173714042184614171648711457, −7.82733515212703333505558598603, −7.59478046444674834901872276718, −6.90413400507529591911480306607, −6.69048801424228202748010266557, −6.28760857130199448742308190491, −5.69511910136387650918038762607, −5.07156293582988964815464365744, −4.93785102777930471911825444536, −3.97161236065414384806823118395, −3.35892479444412213172694053682, −3.03776093403304463992609751991, −2.76143900328984387950086327504, −1.45093610757812644631477506142, −0.68566402181632143400936868225,
0.68566402181632143400936868225, 1.45093610757812644631477506142, 2.76143900328984387950086327504, 3.03776093403304463992609751991, 3.35892479444412213172694053682, 3.97161236065414384806823118395, 4.93785102777930471911825444536, 5.07156293582988964815464365744, 5.69511910136387650918038762607, 6.28760857130199448742308190491, 6.69048801424228202748010266557, 6.90413400507529591911480306607, 7.59478046444674834901872276718, 7.82733515212703333505558598603, 8.513173714042184614171648711457, 8.998087384106584395900630749474, 9.417328076287409178368212643355, 9.652152822443171192462220552798, 10.17982268855402945013562671045, 10.27433520192045755536409980540