| L(s) = 1 | + 4-s − 2·7-s − 9-s − 4·11-s + 16-s + 12·23-s − 25-s − 2·28-s − 2·29-s − 36-s − 14·37-s + 10·43-s − 4·44-s − 3·49-s − 4·53-s + 2·63-s + 64-s + 8·71-s + 8·77-s + 12·79-s − 8·81-s + 12·92-s + 4·99-s − 100-s − 14·107-s − 2·112-s − 22·113-s + ⋯ |
| L(s) = 1 | + 1/2·4-s − 0.755·7-s − 1/3·9-s − 1.20·11-s + 1/4·16-s + 2.50·23-s − 1/5·25-s − 0.377·28-s − 0.371·29-s − 1/6·36-s − 2.30·37-s + 1.52·43-s − 0.603·44-s − 3/7·49-s − 0.549·53-s + 0.251·63-s + 1/8·64-s + 0.949·71-s + 0.911·77-s + 1.35·79-s − 8/9·81-s + 1.25·92-s + 0.402·99-s − 0.0999·100-s − 1.35·107-s − 0.188·112-s − 2.06·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.992881185797305431160019180460, −7.51636812434648152641381108695, −7.02498438997078419837665066659, −6.78981803443426067887330344407, −6.30767870571791414609702060861, −5.66535867566320360447350717637, −5.23127031113566843784833958280, −5.06133765066004851543299785259, −4.25085170144088535597182835250, −3.53487795539138272205529151397, −3.11111845996151503180563314740, −2.70716279666795664985811834104, −2.06803164117844889271109136641, −1.12414514387203751094160780039, 0,
1.12414514387203751094160780039, 2.06803164117844889271109136641, 2.70716279666795664985811834104, 3.11111845996151503180563314740, 3.53487795539138272205529151397, 4.25085170144088535597182835250, 5.06133765066004851543299785259, 5.23127031113566843784833958280, 5.66535867566320360447350717637, 6.30767870571791414609702060861, 6.78981803443426067887330344407, 7.02498438997078419837665066659, 7.51636812434648152641381108695, 7.992881185797305431160019180460