Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 45 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.379266601394$, $\pm0.620733398606$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{17}, \sqrt{-107})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $55$ |
| Isomorphism classes: | 60 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1007$ | $1014049$ | $887465072$ | $852702649561$ | $819628241445527$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $1052$ | $29792$ | $923316$ | $28629152$ | $887426462$ | $27512614112$ | $852894710308$ | $26439622160672$ | $819628195910252$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 55 curves (of which all are hyperelliptic):
- $y^2=5 x^6+19 x^5+23 x^4+10 x^3+8 x+19$
- $y^2=15 x^6+26 x^5+7 x^4+30 x^3+24 x+26$
- $y^2=13 x^6+26 x^5+23 x^4+23 x^3+23 x^2+x+20$
- $y^2=8 x^6+16 x^5+7 x^4+7 x^3+7 x^2+3 x+29$
- $y^2=12 x^6+15 x^5+13 x^4+19 x^3+18 x^2+15 x+19$
- $y^2=26 x^6+3 x^5+14 x^4+7 x^3+11 x^2+x+13$
- $y^2=16 x^6+9 x^5+11 x^4+21 x^3+2 x^2+3 x+8$
- $y^2=13 x^6+29 x^5+24 x^4+10 x^2+13 x+10$
- $y^2=3 x^6+11 x^5+27 x^4+21 x^3+24 x^2+12 x+5$
- $y^2=9 x^6+2 x^5+19 x^4+x^3+10 x^2+5 x+15$
- $y^2=17 x^6+30 x^5+5 x^4+9 x^3+19 x^2+21 x+26$
- $y^2=20 x^6+28 x^5+15 x^4+27 x^3+26 x^2+x+16$
- $y^2=23 x^6+3 x^5+4 x^4+23 x^3+25 x^2+5 x+1$
- $y^2=7 x^6+9 x^5+12 x^4+7 x^3+13 x^2+15 x+3$
- $y^2=18 x^6+14 x^5+6 x^4+4 x^3+28 x^2+6 x+4$
- $y^2=23 x^6+11 x^5+18 x^4+12 x^3+22 x^2+18 x+12$
- $y^2=19 x^6+22 x^5+29 x^4+20 x^3+14 x^2+28 x+9$
- $y^2=26 x^6+4 x^5+25 x^4+29 x^3+11 x^2+22 x+27$
- $y^2=29 x^6+5 x^5+24 x^4+5 x^3+25 x^2+10 x+1$
- $y^2=21 x^6+25 x^5+25 x^4+6 x^3+29 x^2+12 x+22$
- and 35 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{17}, \sqrt{-107})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.bt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1819}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_abt | $4$ | (not in LMFDB) |