-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1007, 'abvar_counts': [1007, 1014049, 887465072, 852702649561, 819628241445527, 787594254019965184, 756943935251763332807, 727426254306756657515625, 699053619999090280924159472, 671790454175087103854508307729], 'abvar_counts_str': '1007 1014049 887465072 852702649561 819628241445527 787594254019965184 756943935251763332807 727426254306756657515625 699053619999090280924159472 671790454175087103854508307729 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.379266601393505, 0.620733398606495], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 32, 'curve_counts': [32, 1052, 29792, 923316, 28629152, 887426462, 27512614112, 852894710308, 26439622160672, 819628195910252], 'curve_counts_str': '32 1052 29792 923316 28629152 887426462 27512614112 852894710308 26439622160672 819628195910252 ', 'curves': ['y^2=5*x^6+19*x^5+23*x^4+10*x^3+8*x+19', 'y^2=15*x^6+26*x^5+7*x^4+30*x^3+24*x+26', 'y^2=13*x^6+26*x^5+23*x^4+23*x^3+23*x^2+x+20', 'y^2=8*x^6+16*x^5+7*x^4+7*x^3+7*x^2+3*x+29', 'y^2=12*x^6+15*x^5+13*x^4+19*x^3+18*x^2+15*x+19', 'y^2=26*x^6+3*x^5+14*x^4+7*x^3+11*x^2+x+13', 'y^2=16*x^6+9*x^5+11*x^4+21*x^3+2*x^2+3*x+8', 'y^2=13*x^6+29*x^5+24*x^4+10*x^2+13*x+10', 'y^2=3*x^6+11*x^5+27*x^4+21*x^3+24*x^2+12*x+5', 'y^2=9*x^6+2*x^5+19*x^4+x^3+10*x^2+5*x+15', 'y^2=17*x^6+30*x^5+5*x^4+9*x^3+19*x^2+21*x+26', 'y^2=20*x^6+28*x^5+15*x^4+27*x^3+26*x^2+x+16', 'y^2=23*x^6+3*x^5+4*x^4+23*x^3+25*x^2+5*x+1', 'y^2=7*x^6+9*x^5+12*x^4+7*x^3+13*x^2+15*x+3', 'y^2=18*x^6+14*x^5+6*x^4+4*x^3+28*x^2+6*x+4', 'y^2=23*x^6+11*x^5+18*x^4+12*x^3+22*x^2+18*x+12', 'y^2=19*x^6+22*x^5+29*x^4+20*x^3+14*x^2+28*x+9', 'y^2=26*x^6+4*x^5+25*x^4+29*x^3+11*x^2+22*x+27', 'y^2=29*x^6+5*x^5+24*x^4+5*x^3+25*x^2+10*x+1', 'y^2=21*x^6+25*x^5+25*x^4+6*x^3+29*x^2+12*x+22', 'y^2=x^6+13*x^5+13*x^4+18*x^3+25*x^2+5*x+4', 'y^2=12*x^6+17*x^5+7*x^4+9*x^3+23*x^2+25*x+22', 'y^2=5*x^6+20*x^5+21*x^4+27*x^3+7*x^2+13*x+4', 'y^2=11*x^6+15*x^5+17*x^4+9*x^3+3*x^2+23*x+4', 'y^2=2*x^6+14*x^5+20*x^4+27*x^3+9*x^2+7*x+12', 'y^2=21*x^6+15*x^4+18*x^3+14*x^2+8*x+21', 'y^2=x^6+14*x^4+23*x^3+11*x^2+24*x+1', 'y^2=18*x^6+2*x^5+9*x^4+24*x^3+15*x^2+7*x+28', 'y^2=23*x^6+6*x^5+27*x^4+10*x^3+14*x^2+21*x+22', 'y^2=9*x^6+18*x^5+5*x^4+8*x^3+22*x^2+4*x+30', 'y^2=27*x^6+23*x^5+15*x^4+24*x^3+4*x^2+12*x+28', 'y^2=28*x^6+26*x^5+5*x^4+18*x^3+24*x^2+15*x+6', 'y^2=20*x^6+11*x^5+8*x^4+14*x^3+24*x^2+25*x+8', 'y^2=29*x^6+2*x^5+24*x^4+11*x^3+10*x^2+13*x+24', 'y^2=11*x^6+24*x^5+17*x^4+3*x^3+9*x^2+x+11', 'y^2=2*x^6+10*x^5+20*x^4+9*x^3+27*x^2+3*x+2', 'y^2=23*x^6+4*x^5+20*x^4+22*x^3+13*x^2+22*x+18', 'y^2=7*x^6+12*x^5+29*x^4+4*x^3+8*x^2+4*x+23', 'y^2=2*x^6+15*x^5+4*x^4+18*x^2+2*x+30', 'y^2=6*x^6+14*x^5+12*x^4+23*x^2+6*x+28', 'y^2=11*x^6+28*x^5+27*x^4+20*x^3+2*x^2+24*x+16', 'y^2=2*x^6+22*x^5+19*x^4+29*x^3+6*x^2+10*x+17', 'y^2=9*x^6+17*x^5+22*x^4+17*x^3+23*x^2+10*x+22', 'y^2=27*x^6+20*x^5+4*x^4+20*x^3+7*x^2+30*x+4', 'y^2=25*x^6+7*x^5+4*x^4+10*x^3+10*x^2+3*x+28', 'y^2=13*x^6+21*x^5+12*x^4+30*x^3+30*x^2+9*x+22', 'y^2=2*x^6+25*x^5+18*x^4+9*x^3+16*x^2+3*x+17', 'y^2=6*x^6+13*x^5+23*x^4+27*x^3+17*x^2+9*x+20', 'y^2=5*x^6+25*x^5+11*x^4+29*x^3+27*x^2+11*x+26', 'y^2=15*x^6+13*x^5+2*x^4+25*x^3+19*x^2+2*x+16', 'y^2=18*x^6+30*x^5+5*x^4+10*x^3+16*x^2+21*x+10', 'y^2=23*x^6+28*x^5+15*x^4+30*x^3+17*x^2+x+30', 'y^2=12*x^6+6*x^5+23*x^4+28*x^2+5*x+5', 'y^2=5*x^6+18*x^5+7*x^4+22*x^2+15*x+15', 'y^2=21*x^6+11*x^5+13*x^4+x^3+4*x^2+17*x+5'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.1819.1'], 'geometric_splitting_field': '2.0.1819.1', 'geometric_splitting_polynomials': [[455, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 55, 'is_cyclic': True, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 55, 'label': '2.31.a_bt', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [], 'number_fields': ['4.0.3308761.1'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 9], [1, 13, 1, 45]], 'poly': [1, 0, 45, 0, 961], 'poly_str': '1 0 45 0 961 ', 'primitive_models': [], 'principal_polarization_count': 60, 'q': 31, 'real_poly': [1, 0, -17], 'simple_distinct': ['2.31.a_bt'], 'simple_factors': ['2.31.a_btA'], 'simple_multiplicities': [1], 'singular_primes': ['2,5*F^2-V'], 'size': 60, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.3308761.1', 'splitting_polynomials': [[961, 0, 45, 0, 1]], 'twist_count': 2, 'twists': [['2.31.a_abt', '2.923521.ahy_ebsad', 4]], 'weak_equivalence_count': 2, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 45, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 11449, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,5*F^2-V']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 20485
{'base_label': '2.31.a_bt', 'extension_degree': 1, 'extension_label': '2.31.a_bt', 'multiplicity': 1}
-
id: 20486
{'base_label': '2.31.a_bt', 'extension_degree': 2, 'extension_label': '1.961.bt', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.3308761.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.a_bt', 'galois_group': '4T2', 'places': [['0', '45/31', '0', '1/31'], ['0', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.1819.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.961.bt', 'galois_group': '2T1', 'places': [['22', '1'], ['8', '1']]}