Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 97 x^{2} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.103713893500$, $\pm0.896286106500$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{219})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $40$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $5$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3625$ | $13140625$ | $51520544500$ | $191652875015625$ | $713342913340590625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3528$ | $226982$ | $13841908$ | $844596302$ | $51520714638$ | $3142742836022$ | $191707360642468$ | $11694146092834142$ | $713342915018298648$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=48 x^6+13 x^5+52 x^4+7 x^3+46 x^2+5 x+47$
- $y^2=35 x^6+26 x^5+43 x^4+14 x^3+31 x^2+10 x+33$
- $y^2=46 x^6+17 x^5+57 x^4+49 x^3+20 x^2+6 x+19$
- $y^2=31 x^6+34 x^5+53 x^4+37 x^3+40 x^2+12 x+38$
- $y^2=41 x^6+3 x^5+31 x^4+57 x^3+42 x^2+48 x+25$
- $y^2=21 x^6+6 x^5+x^4+53 x^3+23 x^2+35 x+50$
- $y^2=48 x^6+41 x^5+20 x^4+x^3+38 x^2+52 x+29$
- $y^2=35 x^6+21 x^5+40 x^4+2 x^3+15 x^2+43 x+58$
- $y^2=41 x^6+59 x^5+49 x^4+51 x^3+6 x^2+30 x+33$
- $y^2=12 x^6+13 x^5+35 x^4+25 x^3+14 x^2+46 x+32$
- $y^2=11 x^6+17 x^5+33 x^4+x^3+13 x^2+16 x+53$
- $y^2=22 x^6+34 x^5+5 x^4+2 x^3+26 x^2+32 x+45$
- $y^2=35 x^6+19 x^5+16 x^4+35 x^3+39 x^2+12 x+23$
- $y^2=9 x^6+38 x^5+32 x^4+9 x^3+17 x^2+24 x+46$
- $y^2=39 x^6+29 x^5+36 x^4+54 x^3+31 x^2+40 x+56$
- $y^2=17 x^6+58 x^5+11 x^4+47 x^3+x^2+19 x+51$
- $y^2=9 x^6+55 x^5+47 x^4+36 x^3+15 x^2+55 x+55$
- $y^2=18 x^6+49 x^5+33 x^4+11 x^3+30 x^2+49 x+49$
- $y^2=54 x^6+58 x^5+46 x^4+5 x^3+8 x^2+19 x+8$
- $y^2=47 x^6+55 x^5+31 x^4+10 x^3+16 x^2+38 x+16$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{219})\). |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.adt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$ |
Base change
This is a primitive isogeny class.