L(s) = 1 | − 3-s + 9-s + 6·11-s + 6·17-s + 8·19-s − 7·25-s − 27-s − 6·33-s − 6·41-s + 2·43-s − 49-s − 6·51-s − 8·57-s + 12·59-s + 17·67-s − 5·73-s + 7·75-s + 81-s − 12·89-s + 22·97-s + 6·99-s − 30·107-s + 14·121-s + 6·123-s + 127-s − 2·129-s + 131-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 1.80·11-s + 1.45·17-s + 1.83·19-s − 7/5·25-s − 0.192·27-s − 1.04·33-s − 0.937·41-s + 0.304·43-s − 1/7·49-s − 0.840·51-s − 1.05·57-s + 1.56·59-s + 2.07·67-s − 0.585·73-s + 0.808·75-s + 1/9·81-s − 1.27·89-s + 2.23·97-s + 0.603·99-s − 2.90·107-s + 1.27·121-s + 0.541·123-s + 0.0887·127-s − 0.176·129-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.126418235\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.126418235\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.133949766638015311131647167836, −7.905689899768977012270748643488, −7.26359254217454229076445169252, −6.93025977408625566618503554868, −6.58754514394795215694997382243, −5.87558128376575952806999392759, −5.59860662553193168857255578291, −5.27460294001417176784611082179, −4.54286766179369215026083020795, −3.99154168047157592477516456010, −3.52821439292886582676068764539, −3.18251050781762512246725363966, −2.12362495002012590435855573626, −1.38837448636201565825473352073, −0.845698580927004502316312392262,
0.845698580927004502316312392262, 1.38837448636201565825473352073, 2.12362495002012590435855573626, 3.18251050781762512246725363966, 3.52821439292886582676068764539, 3.99154168047157592477516456010, 4.54286766179369215026083020795, 5.27460294001417176784611082179, 5.59860662553193168857255578291, 5.87558128376575952806999392759, 6.58754514394795215694997382243, 6.93025977408625566618503554868, 7.26359254217454229076445169252, 7.905689899768977012270748643488, 8.133949766638015311131647167836