Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 13 x^{2} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.278105501792$, $\pm0.721894498208$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{61}, \sqrt{-87})\) |
Galois group: | $C_2^2$ |
Jacobians: | $66$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1383$ | $1912689$ | $2565675216$ | $3522119246361$ | $4808584479571143$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1396$ | $50654$ | $1879300$ | $69343958$ | $2565624022$ | $94931877134$ | $3512473751044$ | $129961739795078$ | $4808584586724436$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=32 x^6+16 x^5+12 x^4+10 x^3+11 x^2+7 x+18$
- $y^2=27 x^6+32 x^5+24 x^4+20 x^3+22 x^2+14 x+36$
- $y^2=34 x^6+12 x^5+5 x^4+16 x^3+25 x^2+5 x+12$
- $y^2=31 x^6+24 x^5+10 x^4+32 x^3+13 x^2+10 x+24$
- $y^2=22 x^6+15 x^5+14 x^4+33 x^3+29 x^2+23 x+13$
- $y^2=7 x^6+30 x^5+28 x^4+29 x^3+21 x^2+9 x+26$
- $y^2=12 x^6+3 x^4+33 x^3+14 x^2+16 x+17$
- $y^2=24 x^6+6 x^4+29 x^3+28 x^2+32 x+34$
- $y^2=23 x^6+3 x^5+20 x^3+10 x^2+24 x+3$
- $y^2=9 x^6+6 x^5+3 x^3+20 x^2+11 x+6$
- $y^2=8 x^6+28 x^5+2 x^4+12 x^3+21 x^2+18 x+33$
- $y^2=16 x^6+19 x^5+4 x^4+24 x^3+5 x^2+36 x+29$
- $y^2=11 x^6+21 x^5+36 x^4+28 x^2+8 x+23$
- $y^2=22 x^6+5 x^5+35 x^4+19 x^2+16 x+9$
- $y^2=3 x^6+30 x^5+31 x^4+11 x^3+36 x^2+17 x+7$
- $y^2=33 x^6+13 x^5+2 x^4+14 x^3+5 x^2+2 x+25$
- $y^2=29 x^6+26 x^5+4 x^4+28 x^3+10 x^2+4 x+13$
- $y^2=2 x^6+5 x^5+32 x^4+8 x^3+30 x^2+x+14$
- $y^2=4 x^6+10 x^5+27 x^4+16 x^3+23 x^2+2 x+28$
- $y^2=31 x^6+20 x^5+19 x^4+36 x^3+34 x^2+19 x+29$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{61}, \sqrt{-87})\). |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5307}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.a_an | $4$ | (not in LMFDB) |