Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 77 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.120592514882$, $\pm0.879407485118$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-29}, \sqrt{183})\) |
Galois group: | $C_2^2$ |
Jacobians: | $30$ |
Isomorphism classes: | 72 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2733$ | $7469289$ | $22164553476$ | $62254798409241$ | $174887471032899693$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2656$ | $148878$ | $7889860$ | $418195494$ | $22164745822$ | $1174711139838$ | $62259721779844$ | $3299763591802134$ | $174887471700286336$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=9 x^6+36 x^5+29 x^4+30 x^3+26 x^2+29 x+33$
- $y^2=9 x^6+39 x^5+47 x^4+8 x^3+x^2+2 x+4$
- $y^2=18 x^6+25 x^5+41 x^4+16 x^3+2 x^2+4 x+8$
- $y^2=6 x^6+39 x^5+11 x^4+17 x^3+43 x^2+21 x+16$
- $y^2=12 x^6+25 x^5+22 x^4+34 x^3+33 x^2+42 x+32$
- $y^2=23 x^6+x^5+49 x^4+35 x^3+26 x^2+10 x+3$
- $y^2=46 x^6+2 x^5+45 x^4+17 x^3+52 x^2+20 x+6$
- $y^2=9 x^6+4 x^5+49 x^4+22 x^3+9 x^2+31 x+45$
- $y^2=18 x^6+8 x^5+45 x^4+44 x^3+18 x^2+9 x+37$
- $y^2=51 x^6+31 x^5+19 x^4+11 x^3+8 x^2+12 x+22$
- $y^2=49 x^6+9 x^5+38 x^4+22 x^3+16 x^2+24 x+44$
- $y^2=6 x^6+14 x^4+28 x^3+24 x^2+31$
- $y^2=30 x^6+20 x^5+14 x^4+16 x^3+9 x^2+18 x+6$
- $y^2=17 x^6+18 x^5+30 x^4+16 x^3+29 x^2+20 x+32$
- $y^2=24 x^6+38 x^5+51 x^4+25 x^3+24 x^2+50 x+9$
- $y^2=48 x^6+23 x^5+49 x^4+50 x^3+48 x^2+47 x+18$
- $y^2=2 x^6+17 x^5+49 x^4+20 x^3+20 x^2+52 x+22$
- $y^2=4 x^6+34 x^5+45 x^4+40 x^3+40 x^2+51 x+44$
- $y^2=26 x^6+9 x^5+32 x^4+25 x^3+51 x^2+37 x+8$
- $y^2=52 x^6+18 x^5+11 x^4+50 x^3+49 x^2+21 x+16$
- $y^2=23 x^6+22 x^5+32 x^4+27 x^3+50 x^2+44 x+47$
- $y^2=46 x^6+44 x^5+11 x^4+x^3+47 x^2+35 x+41$
- $y^2=12 x^6+16 x^5+6 x^4+33 x^3+8 x^2+52 x+52$
- $y^2=19 x^6+32 x^5+12 x^4+19 x^3+21 x^2+24 x+21$
- $y^2=38 x^6+11 x^5+24 x^4+38 x^3+42 x^2+48 x+42$
- $y^2=49 x^6+2 x^5+46 x^4+40 x^3+23 x^2+x+45$
- $y^2=45 x^6+4 x^5+39 x^4+27 x^3+46 x^2+2 x+37$
- $y^2=12 x^6+44 x^5+44 x^4+3 x^3+35 x^2+17 x+43$
- $y^2=29 x^6+7 x^5+13 x^4+8 x^3+39 x+38$
- $y^2=5 x^6+14 x^5+26 x^4+16 x^3+25 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-29}, \sqrt{183})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.acz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5307}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_cz | $4$ | (not in LMFDB) |