L(s) = 1 | + 3·11-s − 6·17-s − 4·19-s − 25-s + 15·41-s − 7·43-s − 49-s − 3·59-s − 13·67-s − 2·73-s − 18·83-s + 12·89-s − 11·97-s + 12·107-s + 18·113-s − 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + ⋯ |
L(s) = 1 | + 0.904·11-s − 1.45·17-s − 0.917·19-s − 1/5·25-s + 2.34·41-s − 1.06·43-s − 1/7·49-s − 0.390·59-s − 1.58·67-s − 0.234·73-s − 1.97·83-s + 1.27·89-s − 1.11·97-s + 1.16·107-s + 1.69·113-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.0769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.139879999706650607630818426549, −7.53698372169676512967766055442, −7.19100591143755850098122194963, −6.65843299115384187384283847011, −6.25662047054462198451966054246, −5.98182840297544678918200700265, −5.34642511850129884343260547644, −4.54456649235047191034996686040, −4.42869614756654881351689080083, −3.90333999023696151080314717295, −3.22689153403607592314696002734, −2.53359883817303697993227419212, −1.99627903342694064370485302700, −1.22399319577796990751985147301, 0,
1.22399319577796990751985147301, 1.99627903342694064370485302700, 2.53359883817303697993227419212, 3.22689153403607592314696002734, 3.90333999023696151080314717295, 4.42869614756654881351689080083, 4.54456649235047191034996686040, 5.34642511850129884343260547644, 5.98182840297544678918200700265, 6.25662047054462198451966054246, 6.65843299115384187384283847011, 7.19100591143755850098122194963, 7.53698372169676512967766055442, 8.139879999706650607630818426549