Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 59 x^{2} )( 1 + 3 x + 59 x^{2} )$ |
$1 + 3 x + 118 x^{2} + 177 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.562562653022$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $60$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3780$ | $12927600$ | $42077432880$ | $146686529707200$ | $511148563857369900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $3709$ | $204876$ | $12105481$ | $714968793$ | $42181101142$ | $2488648389507$ | $146830413407761$ | $8662996001163924$ | $511116754180711549$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=4 x^6+38 x^5+33 x^4+25 x^3+6 x^2+21 x+52$
- $y^2=41 x^6+31 x^5+19 x^4+45 x^3+48 x^2+2 x+34$
- $y^2=39 x^6+43 x^5+14 x^4+50 x^3+43 x^2+41 x+27$
- $y^2=20 x^6+14 x^5+15 x^3+48 x^2+37 x+1$
- $y^2=29 x^6+54 x^5+3 x^4+24 x^3+24 x^2+49 x+24$
- $y^2=17 x^6+46 x^5+57 x^4+6 x^3+52 x^2+36 x+2$
- $y^2=24 x^6+42 x^5+51 x^4+49 x^3+24 x^2+7 x+10$
- $y^2=44 x^6+7 x^5+41 x^4+44 x^3+50 x^2+30 x+7$
- $y^2=18 x^6+24 x^5+4 x^4+12 x^3+30 x^2+34 x+1$
- $y^2=27 x^6+4 x^5+5 x^4+11 x^3+39 x^2+50 x+6$
- $y^2=36 x^6+28 x^5+56 x^4+37 x^3+12 x^2+23 x+15$
- $y^2=42 x^6+22 x^5+36 x^4+50 x^3+5 x^2+29 x+3$
- $y^2=2 x^6+13 x^5+48 x^4+x^3+28 x^2+15 x+3$
- $y^2=3 x^6+39 x^5+46 x^4+15 x^3+35 x^2+13 x+16$
- $y^2=10 x^6+56 x^4+56 x^3+41 x^2+24 x+41$
- $y^2=18 x^6+x^5+10 x^4+38 x^3+11 x^2+31 x+8$
- $y^2=28 x^6+18 x^5+36 x^4+49 x^3+5 x^2+11 x+11$
- $y^2=42 x^6+42 x^5+17 x^4+31 x^3+50 x^2+51 x+26$
- $y^2=40 x^6+50 x^5+32 x^4+11 x^3+48 x^2+53 x+15$
- $y^2=31 x^6+21 x^5+17 x^4+7 x^3+45 x^2+53 x+27$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.a $\times$ 1.59.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ef $\times$ 1.3481.eo. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ad_eo | $2$ | (not in LMFDB) |