Properties

Label 2.59.d_eo
Base field $\F_{59}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 + 59 x^{2} )( 1 + 3 x + 59 x^{2} )$
  $1 + 3 x + 118 x^{2} + 177 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.562562653022$
Angle rank:  $1$ (numerical)
Jacobians:  $60$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3780$ $12927600$ $42077432880$ $146686529707200$ $511148563857369900$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $63$ $3709$ $204876$ $12105481$ $714968793$ $42181101142$ $2488648389507$ $146830413407761$ $8662996001163924$ $511116754180711549$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59^{2}}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.a $\times$ 1.59.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{59}$
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ef $\times$ 1.3481.eo. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ad_eo$2$(not in LMFDB)