-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3780, 'abvar_counts': [3780, 12927600, 42077432880, 146686529707200, 511148563857369900, 1779221355841118649600, 6193378509741497257783740, 21559173854285054988140716800, 75047498135107539345472132384560, 261240335954407318930958931075990000], 'abvar_counts_str': '3780 12927600 42077432880 146686529707200 511148563857369900 1779221355841118649600 6193378509741497257783740 21559173854285054988140716800 75047498135107539345472132384560 261240335954407318930958931075990000 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.5, 0.56256265302211], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 63, 'curve_counts': [63, 3709, 204876, 12105481, 714968793, 42181101142, 2488648389507, 146830413407761, 8662996001163924, 511116754180711549], 'curve_counts_str': '63 3709 204876 12105481 714968793 42181101142 2488648389507 146830413407761 8662996001163924 511116754180711549 ', 'curves': ['y^2=4*x^6+38*x^5+33*x^4+25*x^3+6*x^2+21*x+52', 'y^2=41*x^6+31*x^5+19*x^4+45*x^3+48*x^2+2*x+34', 'y^2=39*x^6+43*x^5+14*x^4+50*x^3+43*x^2+41*x+27', 'y^2=20*x^6+14*x^5+15*x^3+48*x^2+37*x+1', 'y^2=29*x^6+54*x^5+3*x^4+24*x^3+24*x^2+49*x+24', 'y^2=17*x^6+46*x^5+57*x^4+6*x^3+52*x^2+36*x+2', 'y^2=24*x^6+42*x^5+51*x^4+49*x^3+24*x^2+7*x+10', 'y^2=44*x^6+7*x^5+41*x^4+44*x^3+50*x^2+30*x+7', 'y^2=18*x^6+24*x^5+4*x^4+12*x^3+30*x^2+34*x+1', 'y^2=27*x^6+4*x^5+5*x^4+11*x^3+39*x^2+50*x+6', 'y^2=36*x^6+28*x^5+56*x^4+37*x^3+12*x^2+23*x+15', 'y^2=42*x^6+22*x^5+36*x^4+50*x^3+5*x^2+29*x+3', 'y^2=2*x^6+13*x^5+48*x^4+x^3+28*x^2+15*x+3', 'y^2=3*x^6+39*x^5+46*x^4+15*x^3+35*x^2+13*x+16', 'y^2=10*x^6+56*x^4+56*x^3+41*x^2+24*x+41', 'y^2=18*x^6+x^5+10*x^4+38*x^3+11*x^2+31*x+8', 'y^2=28*x^6+18*x^5+36*x^4+49*x^3+5*x^2+11*x+11', 'y^2=42*x^6+42*x^5+17*x^4+31*x^3+50*x^2+51*x+26', 'y^2=40*x^6+50*x^5+32*x^4+11*x^3+48*x^2+53*x+15', 'y^2=31*x^6+21*x^5+17*x^4+7*x^3+45*x^2+53*x+27', 'y^2=56*x^6+49*x^5+8*x^4+20*x^3+12*x^2+18*x', 'y^2=42*x^6+25*x^5+53*x^4+51*x^3+28*x^2+12*x+50', 'y^2=35*x^6+4*x^5+5*x^4+10*x^3+11*x^2+18*x+55', 'y^2=54*x^6+20*x^5+34*x^4+10*x^3+47*x^2+16*x+45', 'y^2=57*x^6+41*x^5+39*x^4+27*x^3+17*x^2+20*x+6', 'y^2=30*x^6+57*x^4+44*x^3+31*x^2+11*x+3', 'y^2=48*x^6+9*x^5+39*x^4+8*x^3+40*x^2+51*x+46', 'y^2=8*x^6+46*x^5+26*x^4+14*x^3+39*x^2+29*x+53', 'y^2=10*x^6+2*x^5+27*x^4+49*x^3+39*x^2+26', 'y^2=31*x^6+24*x^5+22*x^4+43*x^3+52*x^2+14*x+42', 'y^2=15*x^6+41*x^5+30*x^4+33*x^3+x^2+13*x+16', 'y^2=4*x^6+25*x^5+6*x^4+46*x^3+37*x^2+47*x+52', 'y^2=32*x^6+29*x^5+50*x^4+26*x^3+24*x^2+30*x+27', 'y^2=3*x^6+24*x^5+10*x^4+48*x^3+51*x^2+37*x+5', 'y^2=25*x^6+27*x^5+9*x^4+51*x^3+x^2+39*x+7', 'y^2=34*x^6+5*x^5+12*x^4+43*x^3+18*x^2+38*x+31', 'y^2=52*x^6+4*x^5+12*x^4+11*x^3+8*x^2+57*x+27', 'y^2=17*x^6+15*x^5+41*x^4+4*x^3+24*x+27', 'y^2=3*x^6+23*x^5+32*x^4+34*x^3+48*x^2+8*x+4', 'y^2=53*x^6+54*x^5+51*x^4+17*x^3+19*x^2+3*x+28', 'y^2=19*x^6+x^5+14*x^4+14*x^3+28*x^2+18*x+52', 'y^2=12*x^6+43*x^5+x^4+33*x^3+47*x^2+24', 'y^2=58*x^6+35*x^5+20*x^4+44*x^3+57*x^2+30*x+26', 'y^2=26*x^6+55*x^5+14*x^4+45*x^3+4*x^2+7*x+24', 'y^2=49*x^6+5*x^5+8*x^4+37*x^3+48*x^2+57*x+3', 'y^2=4*x^6+9*x^5+28*x^4+11*x^3+48*x^2+17*x+45', 'y^2=9*x^6+20*x^5+12*x^4+33*x^3+13*x^2+20*x+57', 'y^2=14*x^6+37*x^5+56*x^4+45*x^3+9*x^2+21*x+50', 'y^2=26*x^6+29*x^5+26*x^4+8*x^3+41*x^2+45*x+34', 'y^2=26*x^6+4*x^5+15*x^4+51*x^3+53*x^2+30*x+11', 'y^2=42*x^6+48*x^5+24*x^4+45*x^3+28*x^2+47*x+12', 'y^2=26*x^6+55*x^5+55*x^4+33*x^3+30*x^2+10*x+17', 'y^2=10*x^6+x^5+34*x^4+36*x^3+13*x^2+43*x+16', 'y^2=53*x^6+38*x^5+54*x^4+7*x^3+21*x^2+5*x+41', 'y^2=24*x^6+34*x^5+19*x^4+54*x^3+35*x^2+39*x+23', 'y^2=39*x^6+54*x^5+32*x^4+56*x^3+11*x^2+55*x+52', 'y^2=51*x^6+39*x^5+24*x^4+50*x^3+4*x^2+34*x+3', 'y^2=6*x^6+21*x^5+3*x^4+24*x^3+47*x^2+3*x+30', 'y^2=42*x^6+40*x^5+6*x^4+33*x^3+13*x^2+44*x+31', 'y^2=18*x^6+47*x^5+5*x^4+8*x^3+6*x^2+18*x+54'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 3, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['1T1', '2T1'], 'geometric_number_fields': ['1.1.1.1', '2.0.227.1'], 'geometric_splitting_field': '2.0.227.1', 'geometric_splitting_polynomials': [[57, -1, 1]], 'group_structure_count': 4, 'has_geom_ss_factor': True, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 60, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 60, 'label': '2.59.d_eo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 4, 'max_twist_degree': 2, 'newton_coelevation': 1, 'newton_elevation': 1, 'number_fields': ['2.0.59.1', '2.0.227.1'], 'p': 59, 'p_rank': 1, 'p_rank_deficit': 1, 'poly': [1, 3, 118, 177, 3481], 'poly_str': '1 3 118 177 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, 3], 'simple_distinct': ['1.59.a', '1.59.d'], 'simple_factors': ['1.59.aA', '1.59.dA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,-F-10', '3,11*F-8', '2,-3*F+3'], 'slopes': ['0A', '1/2A', '1/2B', '1A'], 'splitting_field': '4.0.179372449.1', 'splitting_polynomials': [[1764, 0, 143, 0, 1]], 'twist_count': 2, 'twists': [['2.59.ad_eo', '2.3481.it_bdim', 2]], 'weak_equivalence_count': 8, 'zfv_index': 18, 'zfv_index_factorization': [[2, 1], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 53572, 'zfv_singular_count': 6, 'zfv_singular_primes': ['3,-F-10', '3,11*F-8', '2,-3*F+3']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 52395
{'base_label': '2.59.d_eo', 'extension_degree': 1, 'extension_label': '1.59.a', 'multiplicity': 1}
-
id: 52396
{'base_label': '2.59.d_eo', 'extension_degree': 1, 'extension_label': '1.59.d', 'multiplicity': 1}
-
id: 52397
{'base_label': '2.59.d_eo', 'extension_degree': 2, 'extension_label': '1.3481.ef', 'multiplicity': 1}
-
id: 52398
{'base_label': '2.59.d_eo', 'extension_degree': 2, 'extension_label': '1.3481.eo', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0'], 'center': '2.0.59.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.a', 'galois_group': '2T1', 'places': [['29', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.227.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.d', 'galois_group': '2T1', 'places': [['1', '1'], ['57', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.227.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.3481.ef', 'galois_group': '2T1', 'places': [['57', '1'], ['1', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['1/2'], 'center': '1.1.1.1', 'center_dim': 1, 'divalg_dim': 4, 'extension_label': '1.3481.eo', 'galois_group': '1T1', 'places': [['0']]}