| L(s) = 1 | + 4-s − 3·16-s + 8·19-s + 6·25-s − 8·31-s + 12·37-s − 7·49-s + 8·61-s − 7·64-s − 8·73-s + 8·76-s − 8·79-s + 32·97-s + 6·100-s + 16·103-s − 4·109-s − 6·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 12·148-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
| L(s) = 1 | + 1/2·4-s − 3/4·16-s + 1.83·19-s + 6/5·25-s − 1.43·31-s + 1.97·37-s − 49-s + 1.02·61-s − 7/8·64-s − 0.936·73-s + 0.917·76-s − 0.900·79-s + 3.24·97-s + 3/5·100-s + 1.57·103-s − 0.383·109-s − 0.545·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.986·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 670761 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.282184056\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.282184056\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.399478269422491857933120887222, −7.69284780302732796081243896828, −7.40329455805969337586046385082, −7.17169795937423532047457496655, −6.52840917278858378508494049082, −6.12651454782128697564405302379, −5.65508043751951853527023430324, −5.04865422437471760867508906365, −4.73684859222634654452372157160, −4.08287439981682554370461249932, −3.38458740737852116554504178998, −2.98637874970414366677564138506, −2.36048640147549282635010547391, −1.62773208662784761853899794309, −0.77550722625892471951964410030,
0.77550722625892471951964410030, 1.62773208662784761853899794309, 2.36048640147549282635010547391, 2.98637874970414366677564138506, 3.38458740737852116554504178998, 4.08287439981682554370461249932, 4.73684859222634654452372157160, 5.04865422437471760867508906365, 5.65508043751951853527023430324, 6.12651454782128697564405302379, 6.52840917278858378508494049082, 7.17169795937423532047457496655, 7.40329455805969337586046385082, 7.69284780302732796081243896828, 8.399478269422491857933120887222