L(s) = 1 | + 3·4-s + 9-s + 5·16-s + 2·25-s + 3·36-s + 6·37-s + 8·47-s + 49-s + 4·53-s + 3·64-s − 8·67-s − 8·71-s − 4·73-s + 81-s + 16·83-s + 6·100-s + 16·101-s + 16·107-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + 18·148-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 1/3·9-s + 5/4·16-s + 2/5·25-s + 1/2·36-s + 0.986·37-s + 1.16·47-s + 1/7·49-s + 0.549·53-s + 3/8·64-s − 0.977·67-s − 0.949·71-s − 0.468·73-s + 1/9·81-s + 1.75·83-s + 3/5·100-s + 1.59·101-s + 1.54·107-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + 1.47·148-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.156915455\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.156915455\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.320021354337537012241642407642, −7.75285386601948514306409613784, −7.44546018727813572031429531776, −7.13635428213251388706733058967, −6.59213111866687116495601119157, −6.17078340898306731077765956330, −5.85964539204743055416890266953, −5.23732941525023925099904976511, −4.62758697612695082516924700800, −4.10706042307528575089429758102, −3.43587267566065340597342015205, −2.86479608663478872177749006124, −2.35227055022536478254567248240, −1.75669575923454840266344870014, −0.924672892020450448822492190869,
0.924672892020450448822492190869, 1.75669575923454840266344870014, 2.35227055022536478254567248240, 2.86479608663478872177749006124, 3.43587267566065340597342015205, 4.10706042307528575089429758102, 4.62758697612695082516924700800, 5.23732941525023925099904976511, 5.85964539204743055416890266953, 6.17078340898306731077765956330, 6.59213111866687116495601119157, 7.13635428213251388706733058967, 7.44546018727813572031429531776, 7.75285386601948514306409613784, 8.320021354337537012241642407642