Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 53 x^{2} )( 1 + 6 x + 53 x^{2} )$ |
$1 - 4 x + 46 x^{2} - 212 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.259013587977$, $\pm0.635198170427$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2640$ | $8110080$ | $22142189520$ | $62309420236800$ | $174912294468133200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $2886$ | $148730$ | $7896782$ | $418254850$ | $22164063894$ | $1174708971850$ | $62259690299038$ | $3299763461335250$ | $174887470224134886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=9 x^6+51 x^5+52 x^4+5 x^3+32 x^2+36 x+32$
- $y^2=46 x^6+43 x^5+49 x^4+34 x^3+12 x^2+39 x+10$
- $y^2=38 x^6+21 x^5+23 x^4+51 x^3+44 x^2+29 x+34$
- $y^2=47 x^6+49 x^5+19 x^4+21 x^3+19 x^2+49 x+47$
- $y^2=5 x^6+11 x^5+28 x^4+32 x^3+45 x^2+5 x+11$
- $y^2=12 x^6+25 x^5+21 x^4+41 x^3+18 x^2+49 x+8$
- $y^2=40 x^6+15 x^5+8 x^4+45 x^3+27 x^2+12 x+35$
- $y^2=3 x^6+13 x^5+51 x^4+26 x^3+51 x^2+13 x+3$
- $y^2=38 x^6+18 x^5+50 x^4+42 x^3+10 x^2+50$
- $y^2=48 x^6+23 x^5+x^4+4 x^3+2 x^2+46 x+42$
- $y^2=47 x^6+35 x^5+5 x^4+17 x^3+5 x^2+35 x+47$
- $y^2=32 x^6+45 x^5+30 x^4+10 x^3+9 x^2+7 x$
- $y^2=5 x^6+29 x^5+37 x^4+10 x^3+52 x^2+9 x+32$
- $y^2=10 x^6+10 x^5+23 x^4+x^3+29 x^2+5 x+3$
- $y^2=30 x^6+19 x^5+14 x^4+17 x^3+18 x^2+14 x+41$
- $y^2=29 x^6+48 x^5+47 x^4+28 x^3+18 x^2+27 x+36$
- $y^2=23 x^6+10 x^5+49 x^4+31 x^3+31 x^2+39 x+22$
- $y^2=47 x^6+5 x^5+47 x^4+42 x^3+41 x^2+21 x+48$
- $y^2=3 x^6+8 x^5+20 x^4+4 x^3+25 x^2+26$
- $y^2=47 x^6+43 x^5+16 x^4+47 x^3+20 x^2+22 x+41$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ak $\times$ 1.53.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.aq_gk | $2$ | (not in LMFDB) |
2.53.e_bu | $2$ | (not in LMFDB) |
2.53.q_gk | $2$ | (not in LMFDB) |