L(s) = 1 | − 4-s + 9-s + 4·11-s − 3·16-s − 4·25-s − 36-s − 10·41-s − 4·44-s + 12·47-s − 7·49-s + 4·53-s + 7·64-s − 8·67-s − 8·71-s + 14·73-s + 81-s − 4·83-s + 4·99-s + 4·100-s + 22·101-s + 24·107-s − 6·121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1/3·9-s + 1.20·11-s − 3/4·16-s − 4/5·25-s − 1/6·36-s − 1.56·41-s − 0.603·44-s + 1.75·47-s − 49-s + 0.549·53-s + 7/8·64-s − 0.977·67-s − 0.949·71-s + 1.63·73-s + 1/9·81-s − 0.439·83-s + 0.402·99-s + 2/5·100-s + 2.18·101-s + 2.32·107-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/4·144-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.586453788\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.586453788\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.622911407201382228901759441203, −7.981674562441776739002986742343, −7.44544023495299927345153264705, −7.06142726980974237559906420435, −6.62553319329423616688177296747, −6.15333457992735215092707896149, −5.69261716591850380686163082689, −5.08555143087979776835219072489, −4.50925468081488809127624716951, −4.23448926333164837222582469995, −3.61643996095770439722418539018, −3.15792286604055879967350136914, −2.17171889635515742619997033871, −1.68831836896583862933344868969, −0.65858084215797769591130251746,
0.65858084215797769591130251746, 1.68831836896583862933344868969, 2.17171889635515742619997033871, 3.15792286604055879967350136914, 3.61643996095770439722418539018, 4.23448926333164837222582469995, 4.50925468081488809127624716951, 5.08555143087979776835219072489, 5.69261716591850380686163082689, 6.15333457992735215092707896149, 6.62553319329423616688177296747, 7.06142726980974237559906420435, 7.44544023495299927345153264705, 7.981674562441776739002986742343, 8.622911407201382228901759441203