L(s) = 1 | − 2-s + 4-s − 2·5-s − 3·7-s − 3·8-s + 2·10-s − 7·11-s + 3·14-s + 16-s − 5·17-s + 6·19-s − 2·20-s + 7·22-s + 7·23-s + 3·25-s − 3·28-s + 12·31-s + 32-s + 5·34-s + 6·35-s + 7·37-s − 6·38-s + 6·40-s − 5·41-s − 6·43-s − 7·44-s − 7·46-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.894·5-s − 1.13·7-s − 1.06·8-s + 0.632·10-s − 2.11·11-s + 0.801·14-s + 1/4·16-s − 1.21·17-s + 1.37·19-s − 0.447·20-s + 1.49·22-s + 1.45·23-s + 3/5·25-s − 0.566·28-s + 2.15·31-s + 0.176·32-s + 0.857·34-s + 1.01·35-s + 1.15·37-s − 0.973·38-s + 0.948·40-s − 0.780·41-s − 0.914·43-s − 1.05·44-s − 1.03·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57836025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57836025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.66035492168789722080708926758, −7.44678258649630959482507273818, −7.12605822728158147997025266434, −6.63964696638233355645423562814, −6.47082801856555489994885442229, −6.06866708255272678559196993435, −5.75903164891355035481811542152, −5.15631839118667501317859348354, −4.79852667983541498008225489309, −4.70175760100627288524333752427, −4.14429745540867689254557136902, −3.50259729499955879015198384677, −3.02396181366965759050994627630, −2.83262970091072605425454747745, −2.82484777050137011511332243547, −2.17181526986574336076866754725, −1.33444030102530712724393804469, −0.78096296652164771620961857400, 0, 0,
0.78096296652164771620961857400, 1.33444030102530712724393804469, 2.17181526986574336076866754725, 2.82484777050137011511332243547, 2.83262970091072605425454747745, 3.02396181366965759050994627630, 3.50259729499955879015198384677, 4.14429745540867689254557136902, 4.70175760100627288524333752427, 4.79852667983541498008225489309, 5.15631839118667501317859348354, 5.75903164891355035481811542152, 6.06866708255272678559196993435, 6.47082801856555489994885442229, 6.63964696638233355645423562814, 7.12605822728158147997025266434, 7.44678258649630959482507273818, 7.66035492168789722080708926758