Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$6968$ |
$40748864$ |
$242357157536$ |
$1516505321746688$ |
$9468751920400593288$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$87$ |
$6525$ |
$491556$ |
$38934585$ |
$3077211037$ |
$243088000014$ |
$19203897336459$ |
$1517108812271313$ |
$119851596633721836$ |
$9468276080720684005$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=35 x^6+60 x^5+73 x^4+55 x^3+50 x^2+19 x+66$
- $y^2=5 x^6+4 x^5+76 x^4+63 x^3+31 x^2+12$
- $y^2=21 x^6+44 x^5+23 x^4+54 x^3+10 x^2+52 x+13$
- $y^2=40 x^6+15 x^5+48 x^4+78 x^3+23 x^2+55 x+28$
- $y^2=51 x^6+47 x^5+51 x^4+54 x^3+12 x^2+35 x+52$
- $y^2=58 x^6+3 x^5+71 x^4+39 x^3+62 x^2+7 x+9$
- $y^2=45 x^6+69 x^5+29 x^4+35 x^3+52 x^2+47 x+72$
- $y^2=34 x^6+27 x^5+77 x^4+56 x^3+29 x^2+16 x+2$
- $y^2=35 x^6+27 x^5+48 x^4+78 x^3+14 x^2+73 x+24$
- $y^2=44 x^6+28 x^5+27 x^4+2 x^3+69 x^2+6 x+60$
- $y^2=35 x^6+23 x^5+35 x^4+77 x^3+55 x^2+28 x+20$
- $y^2=72 x^6+14 x^5+28 x^4+5 x^3+47 x^2+67 x+33$
- $y^2=40 x^6+63 x^5+63 x^4+20 x^3+36 x^2+14 x+12$
- $y^2=46 x^6+70 x^5+71 x^4+52 x^3+10 x^2+55 x+46$
- $y^2=30 x^6+17 x^5+17 x^4+32 x^3+34 x^2+40 x+1$
- $y^2=68 x^6+65 x^5+70 x^4+36 x^3+58 x^2+60 x+40$
- $y^2=46 x^6+32 x^5+72 x^4+38 x^3+24 x^2+31 x+21$
- $y^2=35 x^6+63 x^5+74 x^4+30 x^3+3 x^2+37 x+20$
- $y^2=4 x^6+33 x^5+61 x^4+27 x^3+68 x^2+12 x+76$
- $y^2=23 x^6+57 x^5+20 x^4+40 x^3+46 x^2+33 x+43$
- and 76 more
- $y^2=14 x^6+76 x^5+61 x^4+14 x^3+41 x^2+20 x+54$
- $y^2=41 x^6+54 x^5+62 x^4+24 x^3+44 x^2+13 x+41$
- $y^2=25 x^6+77 x^5+34 x^4+23 x^3+10 x^2+68 x$
- $y^2=53 x^6+12 x^5+76 x^4+50 x^3+23 x^2+60 x+25$
- $y^2=25 x^6+72 x^5+71 x^4+37 x^3+31 x^2+69 x+37$
- $y^2=36 x^6+68 x^5+74 x^4+60 x^3+16 x^2+25 x+65$
- $y^2=14 x^6+10 x^5+70 x^4+63 x^3+4 x^2+72 x+62$
- $y^2=29 x^6+17 x^5+32 x^4+28 x^3+5 x^2+8 x+66$
- $y^2=69 x^6+40 x^5+66 x^4+59 x^3+14 x^2+52 x+10$
- $y^2=17 x^6+10 x^5+51 x^4+28 x^3+35 x^2+x+36$
- $y^2=72 x^6+72 x^5+6 x^4+38 x^3+57 x^2+72 x+30$
- $y^2=7 x^6+55 x^5+5 x^4+47 x^3+29 x^2+37 x+37$
- $y^2=28 x^6+52 x^5+4 x^4+71 x^3+2 x^2+9 x+46$
- $y^2=47 x^6+32 x^5+74 x^4+48 x^3+47 x^2+22 x+49$
- $y^2=45 x^6+46 x^5+63 x^4+62 x^3+25 x^2+45 x+34$
- $y^2=55 x^6+23 x^5+24 x^4+74 x^3+x^2+66 x+70$
- $y^2=67 x^6+61 x^5+62 x^4+32 x^3+66 x^2+29 x+17$
- $y^2=56 x^6+38 x^5+14 x^4+10 x^3+29 x^2+17 x+54$
- $y^2=19 x^6+17 x^5+42 x^4+22 x^3+52 x^2+32 x+75$
- $y^2=5 x^6+56 x^5+40 x^4+70 x^3+76 x^2+27 x+22$
- $y^2=25 x^6+8 x^5+61 x^4+7 x^3+47 x^2+47 x+68$
- $y^2=22 x^6+2 x^5+32 x^4+16 x^3+2 x^2+41 x+15$
- $y^2=9 x^6+2 x^5+58 x^4+51 x^3+13 x^2+51 x+15$
- $y^2=33 x^6+43 x^5+3 x^4+12 x^3+68 x^2+7 x+18$
- $y^2=63 x^6+62 x^5+27 x^4+64 x^3+9 x^2+76 x+63$
- $y^2=15 x^6+61 x^5+77 x^4+x^3+35 x^2+33 x+26$
- $y^2=67 x^6+57 x^5+3 x^4+10 x^3+19 x^2+26 x+36$
- $y^2=52 x^6+26 x^5+22 x^4+6 x^3+71 x^2+23 x$
- $y^2=71 x^6+27 x^5+9 x^4+49 x^3+56 x^2+37 x+65$
- $y^2=42 x^6+43 x^5+17 x^4+17 x^3+2 x^2+13 x+64$
- $y^2=21 x^6+16 x^5+14 x^4+32 x^3+x^2+7 x+19$
- $y^2=59 x^6+22 x^5+78 x^4+28 x^3+44 x^2+77 x+26$
- $y^2=68 x^6+46 x^5+58 x^4+59 x^3+53 x^2+30 x+22$
- $y^2=49 x^6+34 x^5+13 x^4+31 x^3+16 x^2+41 x+36$
- $y^2=76 x^6+73 x^5+43 x^4+58 x^3+71 x^2+13 x+8$
- $y^2=38 x^6+27 x^5+60 x^4+56 x^3+15 x^2+52 x+26$
- $y^2=49 x^6+77 x^5+68 x^4+47 x^3+33 x^2+50 x+22$
- $y^2=32 x^6+8 x^5+17 x^3+63 x^2+76 x$
- $y^2=57 x^6+63 x^5+57 x^4+14 x^2+2 x+15$
- $y^2=75 x^6+66 x^5+18 x^4+43 x^3+64 x^2+61 x+63$
- $y^2=43 x^6+17 x^5+71 x^4+46 x^3+23 x^2+35 x+48$
- $y^2=51 x^6+7 x^5+9 x^4+25 x^3+18 x^2+47 x+38$
- $y^2=28 x^6+53 x^5+8 x^4+52 x^3+7 x^2+70 x+68$
- $y^2=61 x^6+44 x^5+32 x^4+31 x^3+24 x^2+68 x+58$
- $y^2=20 x^6+51 x^5+27 x^4+59 x^3+17 x^2+59 x+40$
- $y^2=13 x^6+4 x^5+x^4+48 x^3+18 x^2+43 x+75$
- $y^2=25 x^6+10 x^5+10 x^4+50 x^3+76 x^2+46 x+43$
- $y^2=75 x^6+33 x^5+37 x^4+48 x^3+48 x^2+40 x+34$
- $y^2=x^6+11 x^5+20 x^4+55 x^3+30 x^2+46 x+63$
- $y^2=32 x^6+61 x^5+23 x^4+4 x^3+68 x^2+33 x+45$
- $y^2=48 x^6+42 x^5+19 x^4+10 x^3+77 x^2+78 x+4$
- $y^2=19 x^5+33 x^4+21 x^3+73 x^2+14 x+36$
- $y^2=18 x^6+76 x^5+18 x^4+72 x^3+30 x^2+8 x+5$
- $y^2=39 x^6+24 x^5+61 x^4+46 x^3+71 x^2+50 x+53$
- $y^2=35 x^6+31 x^5+46 x^4+62 x^3+38 x^2+72 x+39$
- $y^2=13 x^6+66 x^5+77 x^4+68 x^3+59 x^2+25 x+25$
- $y^2=7 x^6+70 x^5+68 x^4+54 x^3+27 x^2+19 x+39$
- $y^2=46 x^6+77 x^4+70 x^3+14 x^2+3 x+40$
- $y^2=34 x^6+70 x^5+31 x^4+52 x^3+38 x^2+72 x+55$
- $y^2=46 x^6+42 x^5+36 x^4+74 x^3+49 x^2+60 x+23$
- $y^2=26 x^6+50 x^5+11 x^4+78 x^3+75 x^2+15 x+22$
- $y^2=65 x^6+67 x^5+26 x^4+41 x^3+18 x^2+61 x+48$
- $y^2=78 x^6+28 x^5+51 x^4+22 x^3+45 x^2+52 x+61$
- $y^2=5 x^6+45 x^5+61 x^4+42 x^3+58 x^2+5 x+49$
- $y^2=46 x^6+53 x^5+66 x^4+57 x^3+77 x^2+70 x+67$
- $y^2=14 x^6+16 x^5+32 x^4+52 x^3+21 x^2+23 x+37$
- $y^2=25 x^6+23 x^5+21 x^4+5 x^3+32 x^2+38 x+75$
- $y^2=61 x^6+9 x^5+22 x^4+26 x^3+66 x^2+55 x+26$
- $y^2=52 x^6+6 x^5+72 x^4+46 x^3+67 x^2+53 x+60$
- $y^2=20 x^6+4 x^5+40 x^4+42 x^3+64 x^2+17 x+70$
- $y^2=59 x^6+61 x^5+43 x^4+2 x^3+31 x^2+38 x+8$
- $y^2=39 x^6+13 x^5+3 x^4+76 x^3+26 x^2+27 x+67$
- $y^2=38 x^6+46 x^5+23 x^4+72 x^3+66 x^2+29 x+30$
- $y^2=26 x^6+x^5+76 x^4+15 x^3+58 x^2+54 x+41$
- $y^2=12 x^6+77 x^5+71 x^4+70 x^3+39 x^2+8 x+20$
- $y^2=3 x^6+25 x^5+12 x^4+39 x^3+14 x^2+6 x+55$
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.6465797.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.79.ah_gk | $2$ | (not in LMFDB) |