Properties

Label 2.79.h_gk
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 + 7 x + 166 x^{2} + 553 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.525785502592$, $\pm0.601287667240$
Angle rank:  $2$ (numerical)
Number field:  4.0.6465797.2
Galois group:  $D_{4}$
Jacobians:  $96$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6968$ $40748864$ $242357157536$ $1516505321746688$ $9468751920400593288$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $87$ $6525$ $491556$ $38934585$ $3077211037$ $243088000014$ $19203897336459$ $1517108812271313$ $119851596633721836$ $9468276080720684005$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.6465797.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.ah_gk$2$(not in LMFDB)