Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 21 x + 228 x^{2} + 1281 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.681657552267$, $\pm0.797390396758$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1076236.1 |
Galois group: | $D_{4}$ |
Jacobians: | $36$ |
Isomorphism classes: | 36 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5252$ | $13907296$ | $51235129712$ | $191859993360256$ | $713307811815189812$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $83$ | $3737$ | $225722$ | $13856865$ | $844554743$ | $51520292102$ | $3142744606931$ | $191707306783969$ | $11694146079562562$ | $713342911395776177$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=5 x^6+5 x^5+50 x^4+56 x^3+20 x^2+35 x+46$
- $y^2=42 x^6+60 x^5+29 x^4+5 x^3+60 x^2+32 x+22$
- $y^2=31 x^6+14 x^5+28 x^4+41 x^3+49 x^2+59 x+37$
- $y^2=58 x^6+45 x^5+17 x^4+45 x^3+55 x^2+32 x+58$
- $y^2=12 x^6+37 x^5+5 x^4+52 x^3+14 x^2+39 x+26$
- $y^2=51 x^6+32 x^5+4 x^4+54 x^3+59 x^2+24 x+58$
- $y^2=51 x^6+21 x^5+46 x^4+9 x^3+40 x^2+16 x+11$
- $y^2=46 x^6+28 x^5+3 x^4+32 x^3+4 x^2+52 x+7$
- $y^2=17 x^6+24 x^5+41 x^4+46 x^3+56 x^2+48 x+49$
- $y^2=60 x^6+55 x^5+58 x^4+31 x^3+25 x^2+4 x+16$
- $y^2=13 x^6+6 x^5+40 x^4+29 x^3+17 x^2+27 x+33$
- $y^2=46 x^6+60 x^5+11 x^4+8 x^3+9 x^2+56 x$
- $y^2=14 x^6+11 x^5+23 x^4+35 x^3+16 x^2+30 x+40$
- $y^2=48 x^6+19 x^5+48 x^4+33 x^3+21 x^2+48 x+14$
- $y^2=39 x^6+28 x^5+37 x^4+28 x^3+27 x^2+56 x+10$
- $y^2=47 x^6+58 x^5+49 x^4+4 x^3+11 x^2+43 x+34$
- $y^2=22 x^6+9 x^5+22 x^4+22 x^3+11 x^2+46 x+60$
- $y^2=35 x^6+2 x^5+22 x^4+47 x^3+34 x^2+21 x+56$
- $y^2=48 x^6+39 x^5+52 x^4+31 x^3+34 x^2+55 x+47$
- $y^2=52 x^6+6 x^5+35 x^4+33 x^3+9 x^2+56 x+45$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.1076236.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.av_iu | $2$ | (not in LMFDB) |