L(s) = 1 | + 11-s + 11·17-s + 4·19-s − 3·25-s − 9·41-s + 17·43-s + 4·49-s − 5·59-s + 22·67-s − 4·73-s − 83-s − 27·89-s + 4·97-s − 9·107-s − 12·113-s − 19·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + ⋯ |
L(s) = 1 | + 0.301·11-s + 2.66·17-s + 0.917·19-s − 3/5·25-s − 1.40·41-s + 2.59·43-s + 4/7·49-s − 0.650·59-s + 2.68·67-s − 0.468·73-s − 0.109·83-s − 2.86·89-s + 0.406·97-s − 0.870·107-s − 1.12·113-s − 1.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.141355156\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.141355156\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.591129551751807107548633168120, −8.150054461093459036082036858955, −7.81041985919391816762254860509, −7.32389799005898134326102442933, −6.99693484957480329940777751650, −6.29132945189820575521326718097, −5.68408943010533111082705292772, −5.49886907722190102660613456668, −5.01113874623755919933889698316, −4.11027902096070089773333604796, −3.77107099333903254350217640445, −3.13952470038265625264638456839, −2.60474986995835706880014704957, −1.56001359609216333213338763988, −0.907075890983809402213259270587,
0.907075890983809402213259270587, 1.56001359609216333213338763988, 2.60474986995835706880014704957, 3.13952470038265625264638456839, 3.77107099333903254350217640445, 4.11027902096070089773333604796, 5.01113874623755919933889698316, 5.49886907722190102660613456668, 5.68408943010533111082705292772, 6.29132945189820575521326718097, 6.99693484957480329940777751650, 7.32389799005898134326102442933, 7.81041985919391816762254860509, 8.150054461093459036082036858955, 8.591129551751807107548633168120