Properties

Label 2.17.al_ck
Base Field $\F_{17}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $( 1 - 7 x + 17 x^{2} )( 1 - 4 x + 17 x^{2} )$
Frobenius angles:  $\pm0.177280642489$, $\pm0.338793663197$
Angle rank:  $2$ (numerical)
Jacobians:  4

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 154 84700 24906112 7026712000 2017227550954 582618715571200 168383383307588218 48662203092791904000 14063141011230982642048 4064229053264910897713500

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 7 293 5068 84129 1420727 24137426 410352215 6975902401 118588353436 2015992733093

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ah $\times$ 1.17.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{17}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.17.ad_g$2$(not in LMFDB)
2.17.d_g$2$(not in LMFDB)
2.17.l_ck$2$(not in LMFDB)