| L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s − 5-s − 4·6-s − 2·7-s − 4·8-s + 3·9-s + 2·10-s + 8·11-s + 6·12-s + 4·14-s − 2·15-s + 5·16-s + 6·17-s − 6·18-s + 2·19-s − 3·20-s − 4·21-s − 16·22-s − 3·23-s − 8·24-s + 5·25-s + 4·27-s − 6·28-s + 9·29-s + 4·30-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.447·5-s − 1.63·6-s − 0.755·7-s − 1.41·8-s + 9-s + 0.632·10-s + 2.41·11-s + 1.73·12-s + 1.06·14-s − 0.516·15-s + 5/4·16-s + 1.45·17-s − 1.41·18-s + 0.458·19-s − 0.670·20-s − 0.872·21-s − 3.41·22-s − 0.625·23-s − 1.63·24-s + 25-s + 0.769·27-s − 1.13·28-s + 1.67·29-s + 0.730·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.724842720\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.724842720\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.076855775688247442228217440280, −7.942793483557331915388758580715, −7.41989287424777244833473036236, −7.24902609699782249377691633453, −6.70442981158701344110969234067, −6.70032907335442660600515889677, −6.28759163635866726182130806331, −5.81438657650852241095066224780, −5.47556775664803999647498203844, −4.82803234800180857750011396590, −4.22972319632168507443973899713, −4.08028836443506289658098082777, −3.58953855335710328535501331403, −3.23303425284918098769209398022, −2.85183341623058143068866976509, −2.68038826018460051733773395230, −1.63708231583989981428054504986, −1.57543823826712693795743274494, −1.09358988712774501287963897065, −0.52807551743414018328827708778,
0.52807551743414018328827708778, 1.09358988712774501287963897065, 1.57543823826712693795743274494, 1.63708231583989981428054504986, 2.68038826018460051733773395230, 2.85183341623058143068866976509, 3.23303425284918098769209398022, 3.58953855335710328535501331403, 4.08028836443506289658098082777, 4.22972319632168507443973899713, 4.82803234800180857750011396590, 5.47556775664803999647498203844, 5.81438657650852241095066224780, 6.28759163635866726182130806331, 6.70032907335442660600515889677, 6.70442981158701344110969234067, 7.24902609699782249377691633453, 7.41989287424777244833473036236, 7.942793483557331915388758580715, 8.076855775688247442228217440280