Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 130 x^{2} + 213 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.456899286358$, $\pm0.601336920172$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.58017393.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $128$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5388$ | $26702928$ | $127920150288$ | $645459009959232$ | $3255300767623547508$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $75$ | $5293$ | $357408$ | $25400089$ | $1804261065$ | $128100537934$ | $9095120283639$ | $645753549533905$ | $45848500433332704$ | $3255243548180619493$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=50 x^6+13 x^5+20 x^4+45 x^3+12 x^2+62 x+9$
- $y^2=54 x^6+38 x^5+37 x^4+19 x^3+39 x^2+2 x+4$
- $y^2=67 x^6+7 x^5+13 x^4+31 x^3+25 x^2+65 x+49$
- $y^2=25 x^6+27 x^5+15 x^4+15 x^3+17 x^2+26$
- $y^2=6 x^6+36 x^5+66 x^4+11 x^3+57 x^2+21 x+16$
- $y^2=57 x^6+58 x^5+22 x^4+54 x^3+17 x^2+3 x+22$
- $y^2=7 x^6+30 x^5+50 x^4+26 x^3+11 x^2+19 x+9$
- $y^2=6 x^6+3 x^5+26 x^4+28 x^3+35 x^2+16 x+8$
- $y^2=33 x^6+11 x^5+55 x^4+8 x^3+66 x^2+25 x+51$
- $y^2=20 x^6+36 x^5+67 x^4+39 x^3+27 x^2+67 x+58$
- $y^2=10 x^6+14 x^5+3 x^4+6 x^3+7 x^2+25 x+39$
- $y^2=27 x^6+54 x^5+5 x^4+38 x^3+4 x^2+49 x+40$
- $y^2=34 x^6+70 x^5+38 x^4+67 x^3+48 x^2+10 x$
- $y^2=25 x^6+51 x^5+16 x^4+11 x^3+58 x^2+59 x+21$
- $y^2=9 x^6+42 x^5+14 x^4+46 x^3+64 x^2+8 x+51$
- $y^2=5 x^6+10 x^5+19 x^4+65 x^3+36 x^2+18 x+46$
- $y^2=33 x^6+59 x^5+26 x^4+57 x^3+51 x^2+37 x+46$
- $y^2=35 x^6+62 x^5+20 x^4+5 x^3+52 x^2+26 x+31$
- $y^2=19 x^6+5 x^5+50 x^4+34 x^3+55 x^2+50 x+61$
- $y^2=3 x^6+39 x^5+59 x^4+8 x^3+14 x^2+17 x+61$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.58017393.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.ad_fa | $2$ | (not in LMFDB) |