L(s) = 1 | + 2·3-s − 4-s − 3·9-s − 2·12-s − 4·13-s + 16-s − 6·17-s + 12·23-s − 14·27-s + 3·36-s − 8·39-s + 2·43-s + 2·48-s + 5·49-s − 12·51-s + 4·52-s + 12·53-s − 16·61-s − 64-s + 6·68-s + 24·69-s + 20·79-s − 4·81-s − 12·92-s + 24·101-s − 28·103-s + 24·107-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s − 9-s − 0.577·12-s − 1.10·13-s + 1/4·16-s − 1.45·17-s + 2.50·23-s − 2.69·27-s + 1/2·36-s − 1.28·39-s + 0.304·43-s + 0.288·48-s + 5/7·49-s − 1.68·51-s + 0.554·52-s + 1.64·53-s − 2.04·61-s − 1/8·64-s + 0.727·68-s + 2.88·69-s + 2.25·79-s − 4/9·81-s − 1.25·92-s + 2.38·101-s − 2.75·103-s + 2.32·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.584030363\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.584030363\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89329599547418811356503150106, −10.34971898797595989320252739846, −9.605776554049539960768405289056, −9.308198244815035831406713849316, −9.002007262895981924125233786835, −8.682234634856913125841328137352, −8.407206674963692957500719941792, −7.64929583800892230370343949942, −7.47651389342887512601851415314, −6.85785597870050714067986650135, −6.39822660865749472858892430044, −5.60108455906016923837017513258, −5.37673738251340324102294189919, −4.59344199134021636518576752244, −4.41261918207217047788383709451, −3.29042029706112970569274377792, −3.24778115972941505072309752789, −2.43288778495280912154802728314, −2.10380209540382038011584865571, −0.61761418858325786133549348357,
0.61761418858325786133549348357, 2.10380209540382038011584865571, 2.43288778495280912154802728314, 3.24778115972941505072309752789, 3.29042029706112970569274377792, 4.41261918207217047788383709451, 4.59344199134021636518576752244, 5.37673738251340324102294189919, 5.60108455906016923837017513258, 6.39822660865749472858892430044, 6.85785597870050714067986650135, 7.47651389342887512601851415314, 7.64929583800892230370343949942, 8.407206674963692957500719941792, 8.682234634856913125841328137352, 9.002007262895981924125233786835, 9.308198244815035831406713849316, 9.605776554049539960768405289056, 10.34971898797595989320252739846, 10.89329599547418811356503150106