L(s) = 1 | − 4-s − 4·7-s + 2·11-s − 6·13-s + 16-s − 4·17-s − 6·19-s − 2·23-s + 4·28-s + 12·31-s − 4·37-s + 2·41-s − 12·43-s − 2·44-s + 16·47-s − 2·49-s + 6·52-s − 10·53-s + 6·59-s + 4·61-s − 64-s + 4·68-s − 8·71-s + 6·76-s − 8·77-s − 9·81-s + 8·83-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.51·7-s + 0.603·11-s − 1.66·13-s + 1/4·16-s − 0.970·17-s − 1.37·19-s − 0.417·23-s + 0.755·28-s + 2.15·31-s − 0.657·37-s + 0.312·41-s − 1.82·43-s − 0.301·44-s + 2.33·47-s − 2/7·49-s + 0.832·52-s − 1.37·53-s + 0.781·59-s + 0.512·61-s − 1/8·64-s + 0.485·68-s − 0.949·71-s + 0.688·76-s − 0.911·77-s − 81-s + 0.878·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5011602663\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5011602663\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50216950673101279494828242424, −10.19836000906053671712503157702, −9.880701168651538483545524427534, −9.626441914554065124511204746133, −9.034187051186593356099017083714, −8.631625502707661486784228531783, −8.384337284992463405107913412477, −7.61322566512906037076969112060, −7.20018038638038360090307323925, −6.66625017792408505921308474131, −6.24644591830586329219217853269, −6.16080015470419843055350496955, −5.05141089402001287832938869078, −4.88726671243182486822197441193, −4.11317476822675674440714923185, −3.90163357213345578701726506416, −2.92181579019591234945792961357, −2.64077184553483477963161860839, −1.78509481947871277327536463665, −0.36989660787846947140103602225,
0.36989660787846947140103602225, 1.78509481947871277327536463665, 2.64077184553483477963161860839, 2.92181579019591234945792961357, 3.90163357213345578701726506416, 4.11317476822675674440714923185, 4.88726671243182486822197441193, 5.05141089402001287832938869078, 6.16080015470419843055350496955, 6.24644591830586329219217853269, 6.66625017792408505921308474131, 7.20018038638038360090307323925, 7.61322566512906037076969112060, 8.384337284992463405107913412477, 8.631625502707661486784228531783, 9.034187051186593356099017083714, 9.626441914554065124511204746133, 9.880701168651538483545524427534, 10.19836000906053671712503157702, 10.50216950673101279494828242424