Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 2 x^{2} - 22 x^{3} + 121 x^{4}$ |
| Frobenius angles: | $\pm0.181611174087$, $\pm0.681611174087$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{21})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $16$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $100$ | $14800$ | $1690900$ | $219040000$ | $26098652500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $122$ | $1270$ | $14958$ | $162050$ | $1771562$ | $19499630$ | $214367518$ | $2357819290$ | $25937424602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=10 x^6+5 x^5+2 x^4+7 x^3+10 x^2+5 x+3$
- $y^2=3 x^6+x^5+10 x^3+9 x^2+7 x$
- $y^2=10 x^6+3 x^5+10 x^4+10 x^2+8 x+10$
- $y^2=7 x^6+3 x^4+7 x^3+2 x^2+8 x+8$
- $y^2=4 x^6+3 x^5+9 x^4+7 x^3+6 x^2+9 x+7$
- $y^2=x^6+10 x^4+4 x^3+10 x^2+8$
- $y^2=8 x^5+10 x^4+2 x^3+7 x^2+8 x+4$
- $y^2=10 x^6+2 x^5+5 x^3+6 x^2+2 x+7$
- $y^2=2 x^6+x^5+9 x^4+10 x^3+2 x^2+9$
- $y^2=8 x^5+8 x^4+2 x^3+4 x^2+10 x+1$
- $y^2=8 x^6+7 x^5+5 x^4+5 x^3+7 x^2+7 x+5$
- $y^2=7 x^6+8 x^5+x^4+7 x^3+5 x^2+5 x+2$
- $y^2=4 x^6+8 x^5+10 x^4+10 x^2+3 x+4$
- $y^2=10 x^6+3 x^5+10 x^4+5 x^3+4 x^2+2$
- $y^2=5 x^6+x^5+5 x^4+5 x^3+x$
- $y^2=9 x^6+3 x^5+8 x^4+4 x^3+2 x^2+x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{4}}$.
Endomorphism algebra over $\F_{11}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{21})\). |
| The base change of $A$ to $\F_{11^{4}}$ is 1.14641.gc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
- Endomorphism algebra over $\F_{11^{2}}$
The base change of $A$ to $\F_{11^{2}}$ is the simple isogeny class 2.121.a_gc and its endomorphism algebra is \(\Q(i, \sqrt{21})\).
Base change
This is a primitive isogeny class.