Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 72 x^{2} + 516 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.473975234504$, $\pm0.973975234504$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{8})\) |
Galois group: | $C_2^2$ |
Jacobians: | $18$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2450$ | $3415300$ | $6375980450$ | $11664274090000$ | $21613336463311250$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $1850$ | $80192$ | $3411798$ | $147021056$ | $6321363050$ | $271820052392$ | $11688189424798$ | $502592615078456$ | $21611482313284250$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=14 x^6+39 x^5+19 x^4+2 x^3+33 x^2+2 x+35$
- $y^2=7 x^6+22 x^5+37 x^3+28 x^2+20 x+15$
- $y^2=40 x^6+2 x^5+28 x^4+32 x^3+19 x^2+18 x+6$
- $y^2=11 x^6+39 x^5+10 x^4+23 x^3+28 x^2+19 x$
- $y^2=37 x^6+26 x^5+36 x^4+23 x^3+14 x^2+5 x+27$
- $y^2=23 x^6+x^5+22 x^4+22 x^2+42 x+23$
- $y^2=28 x^6+39 x^5+38 x^4+13 x^3+40 x^2+19 x+8$
- $y^2=31 x^6+38 x^5+35 x^4+10 x^3+20 x^2+30 x+32$
- $y^2=23 x^6+x^5+38 x^4+38 x^2+42 x+23$
- $y^2=19 x^6+20 x^4+8 x^3+8 x^2+37 x+41$
- $y^2=17 x^6+20 x^5+22 x^4+28 x^3+6 x^2+22 x+16$
- $y^2=41 x^6+30 x^5+42 x^4+27 x^3+33 x^2+31 x+27$
- $y^2=24 x^6+24 x^5+8 x^4+28 x^3+19 x^2+13 x+9$
- $y^2=19 x^6+39 x^5+9 x^4+20 x^3+9 x^2+24 x+1$
- $y^2=3 x^6+15 x^5+28 x^4+26 x^3+7 x^2+38 x+9$
- $y^2=3 x^6+27 x^5+4 x^4+39 x^3+30 x^2+13 x+36$
- $y^2=6 x^6+12 x^5+23 x^4+18 x^3+x^2+29 x+7$
- $y^2=32 x^6+35 x^5+36 x^4+36 x^2+8 x+32$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{4}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
The base change of $A$ to $\F_{43^{4}}$ is 1.3418801.afes 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
- Endomorphism algebra over $\F_{43^{2}}$
The base change of $A$ to $\F_{43^{2}}$ is the simple isogeny class 2.1849.a_afes and its endomorphism algebra is \(\Q(\zeta_{8})\).
Base change
This is a primitive isogeny class.