L(s) = 1 | − 3-s + 4-s + 8·5-s − 2·7-s + 9-s − 12-s − 8·15-s + 16-s + 4·17-s + 8·20-s + 2·21-s + 38·25-s − 27-s − 2·28-s − 16·35-s + 36-s − 4·37-s − 4·41-s + 8·43-s + 8·45-s + 4·47-s − 48-s − 3·49-s − 4·51-s − 8·60-s − 2·63-s + 64-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s + 3.57·5-s − 0.755·7-s + 1/3·9-s − 0.288·12-s − 2.06·15-s + 1/4·16-s + 0.970·17-s + 1.78·20-s + 0.436·21-s + 38/5·25-s − 0.192·27-s − 0.377·28-s − 2.70·35-s + 1/6·36-s − 0.657·37-s − 0.624·41-s + 1.21·43-s + 1.19·45-s + 0.583·47-s − 0.144·48-s − 3/7·49-s − 0.560·51-s − 1.03·60-s − 0.251·63-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.858641056\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.858641056\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.734399327056068821213499579504, −7.74249612429138712743707138359, −7.31626404793277731789533693062, −6.69373326676767816887250497086, −6.35062410158064670794655966913, −6.20004880727144301320499647411, −5.56849277330524351488966193226, −5.48462700120923997068508135767, −5.01244554431640501263959251141, −4.22775784486927931972933466181, −3.18510621994423060681354856306, −2.84811781912171505509456779453, −2.18727745386797108535245912439, −1.66815280525216283373919758824, −1.12176628667720465571658579928,
1.12176628667720465571658579928, 1.66815280525216283373919758824, 2.18727745386797108535245912439, 2.84811781912171505509456779453, 3.18510621994423060681354856306, 4.22775784486927931972933466181, 5.01244554431640501263959251141, 5.48462700120923997068508135767, 5.56849277330524351488966193226, 6.20004880727144301320499647411, 6.35062410158064670794655966913, 6.69373326676767816887250497086, 7.31626404793277731789533693062, 7.74249612429138712743707138359, 8.734399327056068821213499579504