L(s) = 1 | − 3-s + 4-s + 6·5-s + 9-s − 12-s − 6·15-s + 16-s + 6·20-s + 12·23-s + 18·25-s − 27-s + 4·31-s + 36-s + 6·45-s − 48-s − 49-s − 18·53-s + 12·59-s − 6·60-s + 64-s − 12·67-s − 12·69-s − 12·71-s − 18·75-s + 6·80-s + 81-s − 6·89-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s + 2.68·5-s + 1/3·9-s − 0.288·12-s − 1.54·15-s + 1/4·16-s + 1.34·20-s + 2.50·23-s + 18/5·25-s − 0.192·27-s + 0.718·31-s + 1/6·36-s + 0.894·45-s − 0.144·48-s − 1/7·49-s − 2.47·53-s + 1.56·59-s − 0.774·60-s + 1/8·64-s − 1.46·67-s − 1.44·69-s − 1.42·71-s − 2.07·75-s + 0.670·80-s + 1/9·81-s − 0.635·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.582631316\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.582631316\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.588306284228993322910019079566, −7.80193958212726598200307689555, −7.32183660765912911824542697307, −6.74699709884367190533287768720, −6.51536339758611830456646740412, −6.11827065056679955088934441522, −5.65629265381439104833215299913, −5.29081807796721877713053891305, −4.88049926942091769129528924095, −4.35735486353199090873007604186, −3.19902438498418078923442491301, −2.88983225399967859303554755324, −2.21149254138280714447631529000, −1.60043229560927267257229358724, −1.09490259334852374077037147380,
1.09490259334852374077037147380, 1.60043229560927267257229358724, 2.21149254138280714447631529000, 2.88983225399967859303554755324, 3.19902438498418078923442491301, 4.35735486353199090873007604186, 4.88049926942091769129528924095, 5.29081807796721877713053891305, 5.65629265381439104833215299913, 6.11827065056679955088934441522, 6.51536339758611830456646740412, 6.74699709884367190533287768720, 7.32183660765912911824542697307, 7.80193958212726598200307689555, 8.588306284228993322910019079566