L(s) = 1 | + 4-s + 2·5-s − 2·7-s + 16-s + 4·17-s + 2·20-s + 3·25-s − 2·28-s − 4·35-s + 8·37-s − 8·41-s + 16·47-s − 3·49-s − 12·59-s + 64-s − 8·67-s + 4·68-s + 8·79-s + 2·80-s + 8·83-s + 8·85-s + 3·100-s + 4·101-s + 20·109-s − 2·112-s − 8·119-s − 2·121-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 0.894·5-s − 0.755·7-s + 1/4·16-s + 0.970·17-s + 0.447·20-s + 3/5·25-s − 0.377·28-s − 0.676·35-s + 1.31·37-s − 1.24·41-s + 2.33·47-s − 3/7·49-s − 1.56·59-s + 1/8·64-s − 0.977·67-s + 0.485·68-s + 0.900·79-s + 0.223·80-s + 0.878·83-s + 0.867·85-s + 3/10·100-s + 0.398·101-s + 1.91·109-s − 0.188·112-s − 0.733·119-s − 0.181·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.391056566\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.391056566\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.752865539694197495282709374954, −8.115608151697774147296468633778, −7.73353283250992751127139585752, −7.17769186970973697348487450487, −6.82346223695145956817788989826, −6.20740924360800917964256882554, −5.88510876406748555510794878056, −5.59612208991143241807754404223, −4.81813924281743708921791085547, −4.36059359273349356283752908379, −3.42166966104912437443060611100, −3.17294654500634554697426824407, −2.42971757765403906248727725628, −1.80836103764466593632998458586, −0.876315552158498252007017333656,
0.876315552158498252007017333656, 1.80836103764466593632998458586, 2.42971757765403906248727725628, 3.17294654500634554697426824407, 3.42166966104912437443060611100, 4.36059359273349356283752908379, 4.81813924281743708921791085547, 5.59612208991143241807754404223, 5.88510876406748555510794878056, 6.20740924360800917964256882554, 6.82346223695145956817788989826, 7.17769186970973697348487450487, 7.73353283250992751127139585752, 8.115608151697774147296468633778, 8.752865539694197495282709374954