L(s) = 1 | − 3-s + 9-s − 2·19-s − 2·25-s − 27-s + 6·29-s − 10·41-s + 12·43-s − 10·49-s − 6·53-s + 2·57-s − 16·61-s + 4·71-s + 24·73-s + 2·75-s + 81-s − 6·87-s − 22·89-s − 20·107-s − 10·113-s − 10·121-s + 10·123-s + 127-s − 12·129-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 0.458·19-s − 2/5·25-s − 0.192·27-s + 1.11·29-s − 1.56·41-s + 1.82·43-s − 1.42·49-s − 0.824·53-s + 0.264·57-s − 2.04·61-s + 0.474·71-s + 2.80·73-s + 0.230·75-s + 1/9·81-s − 0.643·87-s − 2.33·89-s − 1.93·107-s − 0.940·113-s − 0.909·121-s + 0.901·123-s + 0.0887·127-s − 1.05·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.170301730162111767394991741203, −7.82032383545000327690015613997, −7.15729612697682940095066724751, −6.69875655142312287785482025094, −6.42846248743658562575909424651, −5.89378190949849651836727246284, −5.40669619693389431610228130992, −4.88009757532814486327692893267, −4.46633381198835408588380617503, −3.93014398078295231043844789834, −3.27603123885212005613003445690, −2.68044833935691010226702237681, −1.90838917985364219921355146561, −1.16627510535619940027438018523, 0,
1.16627510535619940027438018523, 1.90838917985364219921355146561, 2.68044833935691010226702237681, 3.27603123885212005613003445690, 3.93014398078295231043844789834, 4.46633381198835408588380617503, 4.88009757532814486327692893267, 5.40669619693389431610228130992, 5.89378190949849651836727246284, 6.42846248743658562575909424651, 6.69875655142312287785482025094, 7.15729612697682940095066724751, 7.82032383545000327690015613997, 8.170301730162111767394991741203