Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 26 x^{2} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.223690282038$, $\pm0.776309717962$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-33}, \sqrt{46})\) |
Galois group: | $C_2^2$ |
Jacobians: | $300$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6216$ | $38638656$ | $243087924744$ | $1518028716524544$ | $9468276078099914376$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6190$ | $493040$ | $38973694$ | $3077056400$ | $243088393966$ | $19203908986160$ | $1517108686943614$ | $119851595982618320$ | $9468276073572981550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=54 x^6+57 x^5+19 x^4+54 x^3+75 x^2+65 x+16$
- $y^2=3 x^6+46 x^5+17 x^4+53 x^3+73 x^2+57 x+14$
- $y^2=9 x^6+59 x^5+51 x^4+x^3+61 x^2+13 x+42$
- $y^2=46 x^6+9 x^5+67 x^4+13 x^3+2 x^2+17 x+27$
- $y^2=59 x^6+27 x^5+43 x^4+39 x^3+6 x^2+51 x+2$
- $y^2=51 x^6+27 x^5+24 x^4+76 x^3+61 x^2+46 x+56$
- $y^2=74 x^6+2 x^5+72 x^4+70 x^3+25 x^2+59 x+10$
- $y^2=40 x^6+20 x^5+9 x^4+47 x^2+76 x+4$
- $y^2=41 x^6+60 x^5+27 x^4+62 x^2+70 x+12$
- $y^2=5 x^6+19 x^5+26 x^4+52 x^3+76 x^2+10 x+35$
- $y^2=15 x^6+57 x^5+78 x^4+77 x^3+70 x^2+30 x+26$
- $y^2=x^6+71 x^5+36 x^4+63 x^3+11 x^2+55 x$
- $y^2=3 x^6+55 x^5+29 x^4+31 x^3+33 x^2+7 x$
- $y^2=57 x^6+65 x^5+62 x^4+41 x^3+3 x^2+33 x+47$
- $y^2=17 x^6+42 x^5+42 x^4+27 x^3+39 x^2+11 x+11$
- $y^2=51 x^6+47 x^5+47 x^4+2 x^3+38 x^2+33 x+33$
- $y^2=10 x^6+38 x^5+71 x^4+73 x^3+7 x^2+9 x+47$
- $y^2=6 x^6+53 x^5+27 x^4+37 x^3+48 x^2+11 x+43$
- $y^2=18 x^6+x^5+2 x^4+32 x^3+65 x^2+33 x+50$
- $y^2=52 x^6+55 x^5+59 x^4+15 x^3+63 x^2+70 x+48$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-33}, \sqrt{46})\). |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.aba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1518}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.a_ba | $4$ | (not in LMFDB) |