Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 89 x^{2} )( 1 + 16 x + 89 x^{2} )$ |
$1 + 22 x + 274 x^{2} + 1958 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.603010988689$, $\pm0.822192315511$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $190$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10176$ | $63254016$ | $495881781696$ | $3936929955840000$ | $31181769182737461696$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $112$ | $7986$ | $703408$ | $62747678$ | $5584068272$ | $496982158866$ | $44231315113328$ | $3936588942772798$ | $350356404343017712$ | $31181719910285976306$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 190 curves (of which all are hyperelliptic):
- $y^2=84 x^6+29 x^5+74 x^4+74 x^3+43 x^2+70 x+88$
- $y^2=58 x^6+84 x^5+30 x^4+43 x^3+46 x^2+76 x+37$
- $y^2=2 x^6+79 x^5+66 x^4+78 x^3+74 x^2+76 x+71$
- $y^2=38 x^6+14 x^5+34 x^4+65 x^3+56 x^2+13 x+45$
- $y^2=53 x^6+48 x^5+41 x^4+33 x^3+72 x^2+81 x+49$
- $y^2=42 x^6+77 x^5+14 x^4+72 x^3+68 x^2+50 x+85$
- $y^2=53 x^6+4 x^5+68 x^4+59 x^3+70 x^2+39 x+69$
- $y^2=49 x^6+x^5+34 x^4+46 x^3+34 x^2+x+49$
- $y^2=25 x^6+19 x^5+62 x^4+58 x^3+62 x^2+19 x+25$
- $y^2=41 x^6+86 x^5+78 x^4+14 x^3+26 x^2+49 x+8$
- $y^2=2 x^6+74 x^5+39 x^4+44 x^3+69 x^2+4 x+73$
- $y^2=68 x^6+x^5+64 x^4+40 x^3+10 x^2+78 x+33$
- $y^2=72 x^6+23 x^5+87 x^4+26 x^3+42 x^2+5 x+33$
- $y^2=73 x^6+3 x^5+29 x^4+82 x^3+75 x^2+57 x+16$
- $y^2=34 x^6+3 x^5+20 x^4+55 x^3+67 x^2+83 x+77$
- $y^2=86 x^6+5 x^5+26 x^4+16 x^3+21 x^2+49 x+20$
- $y^2=20 x^6+58 x^5+47 x^4+70 x^3+55 x^2+15 x+86$
- $y^2=9 x^6+28 x^5+18 x^4+22 x^3+51 x^2+71 x$
- $y^2=19 x^6+41 x^5+24 x^4+23 x^3+54 x^2+24 x+12$
- $y^2=87 x^6+10 x^5+24 x^4+22 x^3+82 x^2+60 x+80$
- and 170 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.g $\times$ 1.89.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.