L(s) = 1 | + 3-s + 4·7-s + 9-s − 4·19-s + 4·21-s − 2·25-s + 27-s + 4·29-s + 8·41-s + 2·49-s − 8·53-s − 4·57-s + 12·59-s + 4·63-s + 12·71-s − 4·73-s − 2·75-s + 81-s + 4·87-s + 12·89-s + 4·107-s + 16·113-s + 18·121-s + 8·123-s + 127-s + 131-s − 16·133-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.51·7-s + 1/3·9-s − 0.917·19-s + 0.872·21-s − 2/5·25-s + 0.192·27-s + 0.742·29-s + 1.24·41-s + 2/7·49-s − 1.09·53-s − 0.529·57-s + 1.56·59-s + 0.503·63-s + 1.42·71-s − 0.468·73-s − 0.230·75-s + 1/9·81-s + 0.428·87-s + 1.27·89-s + 0.386·107-s + 1.50·113-s + 1.63·121-s + 0.721·123-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.002886467\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.002886467\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.359836215585878147404464295663, −8.043957134850943331707290342304, −7.60954366161212441841168959300, −7.17587924046205345837490036556, −6.61563981323718344391274043484, −6.12226441782807349326174107848, −5.63558419330464481919975959290, −4.90440703228611863908541590897, −4.71383952032959165340684047336, −4.15257835110843879444918338178, −3.62438409784530609145614783623, −2.90570333520834236949992562495, −2.18128071009031845501950732787, −1.82203951408740825792417992400, −0.883714616280201484441583169203,
0.883714616280201484441583169203, 1.82203951408740825792417992400, 2.18128071009031845501950732787, 2.90570333520834236949992562495, 3.62438409784530609145614783623, 4.15257835110843879444918338178, 4.71383952032959165340684047336, 4.90440703228611863908541590897, 5.63558419330464481919975959290, 6.12226441782807349326174107848, 6.61563981323718344391274043484, 7.17587924046205345837490036556, 7.60954366161212441841168959300, 8.043957134850943331707290342304, 8.359836215585878147404464295663