| L(s) = 1 | + 2-s − 2·3-s + 3·5-s − 2·6-s − 4·7-s − 8-s + 2·9-s + 3·10-s + 5·11-s − 8·13-s − 4·14-s − 6·15-s − 16-s + 2·18-s − 4·19-s + 8·21-s + 5·22-s − 3·23-s + 2·24-s − 2·25-s − 8·26-s − 6·27-s + 7·29-s − 6·30-s − 2·31-s − 10·33-s − 12·35-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1.15·3-s + 1.34·5-s − 0.816·6-s − 1.51·7-s − 0.353·8-s + 2/3·9-s + 0.948·10-s + 1.50·11-s − 2.21·13-s − 1.06·14-s − 1.54·15-s − 1/4·16-s + 0.471·18-s − 0.917·19-s + 1.74·21-s + 1.06·22-s − 0.625·23-s + 0.408·24-s − 2/5·25-s − 1.56·26-s − 1.15·27-s + 1.29·29-s − 1.09·30-s − 0.359·31-s − 1.74·33-s − 2.02·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.5298365216, −14.4149365414, −13.8694444256, −13.4207720782, −12.8877880759, −12.6240377534, −12.1338212904, −11.8479858489, −11.4194026025, −10.5236035015, −10.1504927632, −9.75888703373, −9.42136980694, −9.12165913226, −8.15974908993, −7.29532939861, −6.77256510940, −6.31868425472, −6.09547707277, −5.49353323477, −4.94008403564, −4.25780649847, −3.63285153115, −2.63484404000, −1.87603141293, 0,
1.87603141293, 2.63484404000, 3.63285153115, 4.25780649847, 4.94008403564, 5.49353323477, 6.09547707277, 6.31868425472, 6.77256510940, 7.29532939861, 8.15974908993, 9.12165913226, 9.42136980694, 9.75888703373, 10.1504927632, 10.5236035015, 11.4194026025, 11.8479858489, 12.1338212904, 12.6240377534, 12.8877880759, 13.4207720782, 13.8694444256, 14.4149365414, 14.5298365216