Properties

Label 4-58492-1.1-c1e2-0-1
Degree $4$
Conductor $58492$
Sign $-1$
Analytic cond. $3.72950$
Root an. cond. $1.38967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 3·5-s − 2·6-s − 4·7-s − 8-s + 2·9-s + 3·10-s + 5·11-s − 8·13-s − 4·14-s − 6·15-s − 16-s + 2·18-s − 4·19-s + 8·21-s + 5·22-s − 3·23-s + 2·24-s − 2·25-s − 8·26-s − 6·27-s + 7·29-s − 6·30-s − 2·31-s − 10·33-s − 12·35-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1.34·5-s − 0.816·6-s − 1.51·7-s − 0.353·8-s + 2/3·9-s + 0.948·10-s + 1.50·11-s − 2.21·13-s − 1.06·14-s − 1.54·15-s − 1/4·16-s + 0.471·18-s − 0.917·19-s + 1.74·21-s + 1.06·22-s − 0.625·23-s + 0.408·24-s − 2/5·25-s − 1.56·26-s − 1.15·27-s + 1.29·29-s − 1.09·30-s − 0.359·31-s − 1.74·33-s − 2.02·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(58492\)    =    \(2^{2} \cdot 7 \cdot 2089\)
Sign: $-1$
Analytic conductor: \(3.72950\)
Root analytic conductor: \(1.38967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 58492,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 - T + T^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 3 T + p T^{2} ) \)
2089$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 39 T + p T^{2} ) \)
good3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.3.c_c
5$D_{4}$ \( 1 - 3 T + 11 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.5.ad_l
11$D_{4}$ \( 1 - 5 T + 19 T^{2} - 5 p T^{3} + p^{2} T^{4} \) 2.11.af_t
13$C_2^2$ \( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.13.i_bg
17$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \) 2.17.a_x
19$D_{4}$ \( 1 + 4 T + 15 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.19.e_p
23$D_{4}$ \( 1 + 3 T + 16 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.23.d_q
29$D_{4}$ \( 1 - 7 T + 22 T^{2} - 7 p T^{3} + p^{2} T^{4} \) 2.29.ah_w
31$D_{4}$ \( 1 + 2 T + 43 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.31.c_br
37$D_{4}$ \( 1 + 7 T + 59 T^{2} + 7 p T^{3} + p^{2} T^{4} \) 2.37.h_ch
41$D_{4}$ \( 1 - 10 T + 85 T^{2} - 10 p T^{3} + p^{2} T^{4} \) 2.41.ak_dh
43$D_{4}$ \( 1 + 3 T + 38 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.43.d_bm
47$D_{4}$ \( 1 + 10 T + 107 T^{2} + 10 p T^{3} + p^{2} T^{4} \) 2.47.k_ed
53$D_{4}$ \( 1 - 3 T + 72 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.53.ad_cu
59$D_{4}$ \( 1 - 4 T + 85 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.59.ae_dh
61$D_{4}$ \( 1 + 6 T + 58 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.61.g_cg
67$D_{4}$ \( 1 + 5 T + 129 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.67.f_ez
71$D_{4}$ \( 1 - 15 T + 114 T^{2} - 15 p T^{3} + p^{2} T^{4} \) 2.71.ap_ek
73$D_{4}$ \( 1 + T - 95 T^{2} + p T^{3} + p^{2} T^{4} \) 2.73.b_adr
79$D_{4}$ \( 1 + 10 T + 135 T^{2} + 10 p T^{3} + p^{2} T^{4} \) 2.79.k_ff
83$D_{4}$ \( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} \) 2.83.ab_ak
89$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \) 2.89.a_abl
97$D_{4}$ \( 1 - 11 T + 57 T^{2} - 11 p T^{3} + p^{2} T^{4} \) 2.97.al_cf
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.5298365216, −14.4149365414, −13.8694444256, −13.4207720782, −12.8877880759, −12.6240377534, −12.1338212904, −11.8479858489, −11.4194026025, −10.5236035015, −10.1504927632, −9.75888703373, −9.42136980694, −9.12165913226, −8.15974908993, −7.29532939861, −6.77256510940, −6.31868425472, −6.09547707277, −5.49353323477, −4.94008403564, −4.25780649847, −3.63285153115, −2.63484404000, −1.87603141293, 0, 1.87603141293, 2.63484404000, 3.63285153115, 4.25780649847, 4.94008403564, 5.49353323477, 6.09547707277, 6.31868425472, 6.77256510940, 7.29532939861, 8.15974908993, 9.12165913226, 9.42136980694, 9.75888703373, 10.1504927632, 10.5236035015, 11.4194026025, 11.8479858489, 12.1338212904, 12.6240377534, 12.8877880759, 13.4207720782, 13.8694444256, 14.4149365414, 14.5298365216

Graph of the $Z$-function along the critical line