Properties

Label 2.5.ad_l
Base Field $\F_{5}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 11 x^{2} - 15 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.300933478836$, $\pm0.472779926746$
Angle rank:  $2$ (numerical)
Number field:  4.0.6525.1
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 19 1045 19399 385605 9621904 244330405 6086864719 152070658245 3814223251819 95468531488000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 39 153 619 3078 15639 77913 389299 1952883 9775974

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 4.0.6525.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.5.d_l$2$2.25.n_dd