L(s) = 1 | + 2·3-s − 2·5-s − 6·7-s + 2·11-s − 4·15-s − 2·17-s + 4·19-s − 12·21-s − 10·23-s + 3·25-s − 2·27-s + 2·31-s + 4·33-s + 12·35-s + 8·37-s − 4·43-s − 16·47-s + 16·49-s − 4·51-s + 4·53-s − 4·55-s + 8·57-s − 12·59-s + 12·61-s + 8·67-s − 20·69-s − 18·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s − 2.26·7-s + 0.603·11-s − 1.03·15-s − 0.485·17-s + 0.917·19-s − 2.61·21-s − 2.08·23-s + 3/5·25-s − 0.384·27-s + 0.359·31-s + 0.696·33-s + 2.02·35-s + 1.31·37-s − 0.609·43-s − 2.33·47-s + 16/7·49-s − 0.560·51-s + 0.549·53-s − 0.539·55-s + 1.05·57-s − 1.56·59-s + 1.53·61-s + 0.977·67-s − 2.40·69-s − 2.13·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.928922963658874523758355003244, −7.80426719117419148135812987772, −7.35964288462788227602696607052, −6.83721870549610563750346602203, −6.56259374097146080810193118420, −6.40066565088391416726406346858, −5.87381654218097246350202106862, −5.69885573069703090362939070780, −4.91460372816291462828069273390, −4.59483975957788507831792685189, −3.99033601735098846326360927815, −3.82629336247194480501038923942, −3.33657356547385063368288699885, −3.21766165034034208013454350049, −2.68488056389833965110439082532, −2.43616370254769277937078573550, −1.70700465844956140791048896558, −1.02302862836564333269616234969, 0, 0,
1.02302862836564333269616234969, 1.70700465844956140791048896558, 2.43616370254769277937078573550, 2.68488056389833965110439082532, 3.21766165034034208013454350049, 3.33657356547385063368288699885, 3.82629336247194480501038923942, 3.99033601735098846326360927815, 4.59483975957788507831792685189, 4.91460372816291462828069273390, 5.69885573069703090362939070780, 5.87381654218097246350202106862, 6.40066565088391416726406346858, 6.56259374097146080810193118420, 6.83721870549610563750346602203, 7.35964288462788227602696607052, 7.80426719117419148135812987772, 7.928922963658874523758355003244