L(s) = 1 | − 2·3-s + 6·11-s − 2·13-s + 10·19-s − 6·23-s + 2·27-s − 4·29-s + 6·31-s − 12·33-s − 8·37-s + 4·39-s − 16·41-s − 2·43-s − 16·47-s − 2·49-s − 16·53-s − 20·57-s + 14·59-s − 4·61-s + 4·67-s + 12·69-s − 6·71-s − 12·79-s − 81-s + 16·83-s + 8·87-s + 4·89-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1.80·11-s − 0.554·13-s + 2.29·19-s − 1.25·23-s + 0.384·27-s − 0.742·29-s + 1.07·31-s − 2.08·33-s − 1.31·37-s + 0.640·39-s − 2.49·41-s − 0.304·43-s − 2.33·47-s − 2/7·49-s − 2.19·53-s − 2.64·57-s + 1.82·59-s − 0.512·61-s + 0.488·67-s + 1.44·69-s − 0.712·71-s − 1.35·79-s − 1/9·81-s + 1.75·83-s + 0.857·87-s + 0.423·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.891252500463834887192062122854, −7.83322038250952797704357135754, −7.06224287384052973310447466368, −6.85779993843081023039767700994, −6.53949829978169963906621921431, −6.40556034482060990413259131756, −5.68258185645459828073964222386, −5.59907380321185223939227979463, −5.13209752501616089528562632728, −4.87161293504776806644727113079, −4.48382599271845081471269316626, −3.78316007533201144157802217709, −3.56720606627189619447794128968, −3.23714926833355999670816145980, −2.69270307217589765066032218328, −1.91906687317289759351177046723, −1.32530472967473519653078788979, −1.32296823242303117147726618718, 0, 0,
1.32296823242303117147726618718, 1.32530472967473519653078788979, 1.91906687317289759351177046723, 2.69270307217589765066032218328, 3.23714926833355999670816145980, 3.56720606627189619447794128968, 3.78316007533201144157802217709, 4.48382599271845081471269316626, 4.87161293504776806644727113079, 5.13209752501616089528562632728, 5.59907380321185223939227979463, 5.68258185645459828073964222386, 6.40556034482060990413259131756, 6.53949829978169963906621921431, 6.85779993843081023039767700994, 7.06224287384052973310447466368, 7.83322038250952797704357135754, 7.891252500463834887192062122854