Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 50 x^{2} + 116 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.456595067822$, $\pm0.669367141882$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.353088.1 |
Galois group: | $D_{4}$ |
Jacobians: | $42$ |
Isomorphism classes: | 54 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1012$ | $781264$ | $590247988$ | $499858957312$ | $420676155489172$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $926$ | $24202$ | $706734$ | $20509634$ | $594807950$ | $17250235274$ | $500246382430$ | $14507131207906$ | $420707265186686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=14 x^6+10 x^5+11 x^4+3 x^3+20 x^2+19 x+25$
- $y^2=12 x^6+11 x^5+7 x^4+15 x^3+16 x^2+26 x+25$
- $y^2=23 x^6+25 x^5+9 x^3+26 x^2+26 x+18$
- $y^2=27 x^6+8 x^5+28 x^4+22 x^3+12 x^2+16 x+14$
- $y^2=7 x^5+19 x^4+15 x^3+22 x^2+14 x+16$
- $y^2=18 x^6+x^5+26 x^4+20 x^3+16 x^2+20 x+9$
- $y^2=18 x^6+14 x^5+22 x^4+15 x^3+4 x^2+26 x+20$
- $y^2=21 x^6+13 x^5+2 x^4+x^3+26 x^2+28 x+1$
- $y^2=20 x^6+9 x^5+7 x^4+4 x^3+11 x^2+8 x+24$
- $y^2=2 x^6+18 x^5+26 x^4+15 x^3+21 x^2+7 x+4$
- $y^2=17 x^6+15 x^5+17 x^4+11 x^3+18 x^2+9 x+25$
- $y^2=28 x^6+17 x^5+3 x^4+12 x^3+18 x^2+14 x+27$
- $y^2=25 x^6+5 x^5+13 x^4+13 x^3+23 x^2+27 x+3$
- $y^2=12 x^6+13 x^5+23 x^4+27 x^3+3 x^2+9 x+14$
- $y^2=23 x^6+18 x^5+16 x^4+15 x^3+10 x^2+12 x+19$
- $y^2=25 x^6+13 x^5+23 x^4+4 x^3+16 x^2+3 x+7$
- $y^2=4 x^6+9 x^5+8 x^4+8 x^3+10 x^2+x+14$
- $y^2=18 x^6+26 x^5+18 x^4+17 x^3+3 x^2+9 x+17$
- $y^2=14 x^6+13 x^5+18 x^4+13 x^3+25 x^2+10 x+1$
- $y^2=24 x^6+14 x^5+3 x^4+23 x^3+11 x^2+21 x+16$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.353088.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ae_by | $2$ | (not in LMFDB) |