Properties

Label 2.37.i_bq
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 42 x^{2} + 296 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.422624049732$, $\pm0.855191996109$
Angle rank:  $2$ (numerical)
Number field:  4.0.35856.1
Galois group:  $D_{4}$
Jacobians:  $96$
Isomorphism classes:  204

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1716$ $1901328$ $2585711700$ $3510855389184$ $4806754553654196$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $1390$ $51046$ $1873294$ $69317566$ $2565830590$ $94931872438$ $3512484116254$ $129961707987022$ $4808584289831950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.35856.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.ai_bq$2$(not in LMFDB)