-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 1716, 'abvar_counts': [1716, 1901328, 2585711700, 3510855389184, 4806754553654196, 6583219309402678800, 9012060850008639112404, 12337528290574057211756544, 16890049676733509101366955700, 23122483269539897854628167392528], 'abvar_counts_str': '1716 1901328 2585711700 3510855389184 4806754553654196 6583219309402678800 9012060850008639112404 12337528290574057211756544 16890049676733509101366955700 23122483269539897854628167392528 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.422624049732126, 0.855191996108588], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 46, 'curve_counts': [46, 1390, 51046, 1873294, 69317566, 2565830590, 94931872438, 3512484116254, 129961707987022, 4808584289831950], 'curve_counts_str': '46 1390 51046 1873294 69317566 2565830590 94931872438 3512484116254 129961707987022 4808584289831950 ', 'curves': ['y^2=4*x^6+20*x^5+36*x^4+3*x^3+30*x^2+35*x+15', 'y^2=2*x^6+24*x^5+14*x^4+27*x^3+33*x^2+20*x+24', 'y^2=6*x^6+29*x^5+36*x^4+36*x^3+27*x+1', 'y^2=12*x^6+14*x^5+26*x^4+19*x^3+13*x^2+25*x+17', 'y^2=25*x^6+7*x^5+20*x^4+26*x^3+6*x^2+16*x+12', 'y^2=26*x^6+11*x^5+6*x^4+8*x^3+30*x^2+26*x+7', 'y^2=30*x^6+9*x^5+3*x^4+30*x^3+11*x^2+18*x+5', 'y^2=30*x^6+x^5+26*x^3+11*x^2+33*x+8', 'y^2=13*x^6+2*x^5+29*x^4+16*x^3+4*x^2+8*x+10', 'y^2=4*x^6+36*x^5+34*x^4+24*x^3+28*x^2+5*x+29', 'y^2=26*x^6+19*x^5+23*x^4+33*x^3+33*x^2+13*x+28', 'y^2=33*x^6+29*x^5+28*x^4+29*x^3+13*x^2+7*x+24', 'y^2=21*x^6+31*x^5+15*x^4+31*x^3+4*x^2+18*x+13', 'y^2=33*x^6+7*x^5+8*x^4+27*x^3+33*x^2+32*x+26', 'y^2=28*x^6+22*x^5+19*x^4+9*x^3+6*x^2+31*x+1', 'y^2=36*x^6+9*x^5+5*x^4+8*x^3+15*x^2+7*x+33', 'y^2=26*x^6+10*x^5+19*x^4+2*x^3+x^2+9*x+1', 'y^2=26*x^6+20*x^5+16*x^4+11*x^3+9*x^2+33*x+15', 'y^2=9*x^6+30*x^5+16*x^4+30*x^3+20*x^2+4*x+11', 'y^2=20*x^6+22*x^5+15*x^4+28*x^3+30*x^2+35*x+23', 'y^2=20*x^6+28*x^5+4*x^4+28*x^3+3*x^2+19*x', 'y^2=21*x^6+4*x^5+31*x^4+28*x^3+7*x^2+11*x+10', 'y^2=12*x^6+34*x^5+14*x^4+6*x^3+10*x^2+34*x+14', 'y^2=34*x^6+21*x^5+20*x^4+18*x^3+18*x^2+21*x+6', 'y^2=36*x^6+27*x^5+19*x^4+13*x^3+35*x^2+9*x+18', 'y^2=25*x^6+17*x^5+28*x^4+17*x^3+26*x^2+12', 'y^2=11*x^6+3*x^5+24*x^4+14*x^3+x^2+2*x+17', 'y^2=22*x^6+x^5+31*x^4+15*x^3+26*x^2+26*x+21', 'y^2=34*x^6+6*x^5+36*x^4+20*x^3+24*x^2+7*x+17', 'y^2=18*x^6+24*x^5+12*x^4+25*x^3+26*x^2+5*x+34', 'y^2=2*x^6+30*x^5+7*x^4+14*x^3+32*x^2+33*x+25', 'y^2=9*x^6+15*x^5+15*x^4+32*x^3+x^2+x+16', 'y^2=24*x^6+9*x^5+15*x^4+23*x^3+10*x^2+27*x+26', 'y^2=x^6+34*x^5+29*x^4+27*x^3+21*x^2+36*x+34', 'y^2=10*x^6+x^5+25*x^4+34*x^3+29*x^2+5*x+30', 'y^2=3*x^6+17*x^5+24*x^4+35*x^3+x^2+5*x+28', 'y^2=3*x^6+22*x^5+15*x^4+16*x^3+26*x^2+4*x+34', 'y^2=14*x^6+30*x^5+19*x^4+9*x^3+8*x^2+25*x+32', 'y^2=x^6+5*x^5+8*x^4+26*x^2+2*x+5', 'y^2=28*x^6+x^5+14*x^4+20*x^3+15*x^2+10*x+33', 'y^2=25*x^5+35*x^4+24*x^3+26*x^2+32*x+3', 'y^2=21*x^6+2*x^5+2*x^3+33*x^2+6*x+17', 'y^2=23*x^6+18*x^5+8*x^4+5*x^3+27*x^2+14*x+19', 'y^2=26*x^6+21*x^5+21*x^4+12*x^3+19*x^2+15*x+35', 'y^2=10*x^6+15*x^5+7*x^4+29*x^3+27*x^2+16*x+21', 'y^2=34*x^6+7*x^5+5*x^4+17*x^3+23*x^2+15*x+5', 'y^2=10*x^6+29*x^5+x^4+4*x^3+34*x^2+16*x+18', 'y^2=22*x^6+36*x^5+36*x^4+11*x^3+28*x^2+25*x+36', 'y^2=6*x^6+25*x^5+18*x^4+27*x^3+25*x^2+35*x+12', 'y^2=10*x^6+20*x^5+35*x^4+4*x^3+35*x^2+14*x', 'y^2=28*x^6+19*x^5+11*x^4+35*x^3+23*x^2+34*x+11', 'y^2=22*x^6+7*x^5+9*x^4+26*x^3+31*x^2+20*x+29', 'y^2=16*x^6+33*x^5+10*x^4+17*x^3+11*x^2+23*x+4', 'y^2=17*x^6+16*x^5+x^4+13*x^3+27*x^2+3*x+17', 'y^2=26*x^6+31*x^4+25*x^3+9*x^2+5*x', 'y^2=7*x^6+19*x^5+6*x^4+24*x^3+30*x^2+16*x+27', 'y^2=28*x^6+25*x^5+9*x^4+27*x^3+20*x^2+27*x+32', 'y^2=21*x^6+27*x^5+29*x^4+5*x^3+36*x^2+3*x+20', 'y^2=19*x^6+15*x^5+24*x^3+5*x^2+30*x+35', 'y^2=13*x^6+9*x^5+9*x^4+28*x^3+12*x^2+12*x+7', 'y^2=2*x^6+31*x^5+10*x^4+17*x^3+9*x^2+36*x+23', 'y^2=21*x^6+31*x^5+23*x^4+32*x^3+3*x^2+25', 'y^2=6*x^6+33*x^5+28*x^4+16*x^3+36*x^2+21*x+9', 'y^2=26*x^6+30*x^5+19*x^4+32*x^3+25*x^2+15*x+26', 'y^2=31*x^6+26*x^5+24*x^4+2*x^3+3*x^2+22*x+7', 'y^2=30*x^6+23*x^5+36*x^4+33*x^3+11*x^2+25*x+11', 'y^2=29*x^6+15*x^5+4*x^4+36*x^3+x^2+4*x+29', 'y^2=36*x^6+18*x^5+29*x^4+12*x^3+20*x^2+27*x+6', 'y^2=30*x^6+31*x^5+x^4+10*x^3+36*x^2+34*x+15', 'y^2=11*x^6+34*x^5+20*x^4+19*x^3+16*x^2+33*x+24', 'y^2=13*x^6+11*x^5+20*x^4+x^3+17*x^2+2*x+7', 'y^2=36*x^6+22*x^5+28*x^4+19*x^3+2*x^2+35*x+30', 'y^2=34*x^6+36*x^5+20*x^4+24*x^3+4*x^2+25*x+3', 'y^2=15*x^6+35*x^5+7*x^3+15*x^2+8*x+12', 'y^2=30*x^6+3*x^5+5*x^4+23*x^3+31*x^2+35*x+33', 'y^2=20*x^6+22*x^5+7*x^4+12*x^3+29*x^2+36*x+36', 'y^2=25*x^6+8*x^5+11*x^4+5*x^3+25*x^2+6*x+1', 'y^2=17*x^6+12*x^5+23*x^4+13*x^3+2*x^2+24*x+10', 'y^2=35*x^6+34*x^5+12*x^4+13*x^3+36*x^2+7*x+4', 'y^2=26*x^6+24*x^5+19*x^4+11*x^3+6*x^2+x+33', 'y^2=32*x^6+23*x^5+27*x^4+4*x^3+15*x^2+30*x+4', 'y^2=24*x^6+23*x^5+28*x^4+36*x^3+31*x^2+6*x+27', 'y^2=27*x^6+12*x^5+10*x^4+11*x^3+14*x^2+x+26', 'y^2=4*x^6+23*x^5+25*x^4+23*x^2+9*x+28', 'y^2=21*x^6+3*x^5+x^4+11*x^3+23*x^2+13*x+3', 'y^2=25*x^6+17*x^5+22*x^4+2*x^3+7*x+15', 'y^2=4*x^6+14*x^5+10*x^4+25*x^3+22*x^2+x', 'y^2=33*x^6+4*x^5+29*x^4+23*x^3+13*x^2+15*x+36', 'y^2=15*x^6+33*x^5+30*x^4+13*x^3+24*x^2+33*x+34', 'y^2=16*x^6+29*x^5+19*x^4+4*x^3+27*x^2+6*x+16', 'y^2=7*x^6+22*x^5+11*x^4+8*x^2+15*x+34', 'y^2=36*x^6+25*x^5+22*x^4+3*x^3+21*x^2+14*x+9', 'y^2=7*x^6+31*x^5+7*x^4+10*x^3+18*x^2+13*x+25', 'y^2=x^6+26*x^5+x^4+31*x^3+3*x^2+32*x+20', 'y^2=2*x^6+31*x^5+2*x^4+5*x^3+19*x^2+18*x+21', 'y^2=30*x^6+16*x^5+20*x^4+18*x^3+8*x^2+9*x+10'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 7, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.35856.1'], 'geometric_splitting_field': '4.0.35856.1', 'geometric_splitting_polynomials': [[24, -12, 9, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 96, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 96, 'label': '2.37.i_bq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.35856.1'], 'p': 37, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 4], [1, 11, 1, 12], [1, 13, 1, 12], [1, 5, 1, 12]], 'poly': [1, 8, 42, 296, 1369], 'poly_str': '1 8 42 296 1369 ', 'primitive_models': [], 'principal_polarization_count': 96, 'q': 37, 'real_poly': [1, 8, -32], 'simple_distinct': ['2.37.i_bq'], 'simple_factors': ['2.37.i_bqA'], 'simple_multiplicities': [1], 'singular_primes': ['2,3*F+2*V+15'], 'size': 204, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.35856.1', 'splitting_polynomials': [[24, -12, 9, 0, 1]], 'twist_count': 2, 'twists': [['2.37.ai_bq', '2.1369.u_aja', 2]], 'weak_equivalence_count': 7, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 96, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 3984, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,3*F+2*V+15']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.37.i_bq', 'extension_degree': 1, 'extension_label': '2.37.i_bq', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.35856.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.37.i_bq', 'galois_group': '4T3', 'places': [['27', '1', '0', '0'], ['12', '1', '0', '0'], ['32', '1', '0', '0'], ['3', '1', '0', '0']]}