L(s) = 1 | − 2·2-s + 3·4-s − 7-s − 4·8-s + 2·11-s − 4·13-s + 2·14-s + 5·16-s − 3·17-s + 7·19-s − 4·22-s − 6·23-s + 8·26-s − 3·28-s + 3·29-s + 31-s − 6·32-s + 6·34-s − 13·37-s − 14·38-s + 8·43-s + 6·44-s + 12·46-s − 6·47-s − 5·49-s − 12·52-s + 9·53-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.377·7-s − 1.41·8-s + 0.603·11-s − 1.10·13-s + 0.534·14-s + 5/4·16-s − 0.727·17-s + 1.60·19-s − 0.852·22-s − 1.25·23-s + 1.56·26-s − 0.566·28-s + 0.557·29-s + 0.179·31-s − 1.06·32-s + 1.02·34-s − 2.13·37-s − 2.27·38-s + 1.21·43-s + 0.904·44-s + 1.76·46-s − 0.875·47-s − 5/7·49-s − 1.66·52-s + 1.23·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24502500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24502500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.017637585006348520227328644935, −7.79294763549993325217619808678, −7.27710101114682377490844291281, −7.26103110883045301954338705360, −6.66380799495427026102804544071, −6.53832530644259488053929343841, −5.95602454770431659440922950217, −5.74760645779859951798545448350, −5.05554384694337290805841813534, −4.98441891198832452769047333050, −4.19712402740535266970959542782, −3.97151016297051327878671560357, −3.16879138609288381824344005953, −3.14533124261814314153039276429, −2.43455653025072204342386265506, −2.12449234460290937536210726977, −1.41439500488856941593153725874, −1.16253671815266753101452741456, 0, 0,
1.16253671815266753101452741456, 1.41439500488856941593153725874, 2.12449234460290937536210726977, 2.43455653025072204342386265506, 3.14533124261814314153039276429, 3.16879138609288381824344005953, 3.97151016297051327878671560357, 4.19712402740535266970959542782, 4.98441891198832452769047333050, 5.05554384694337290805841813534, 5.74760645779859951798545448350, 5.95602454770431659440922950217, 6.53832530644259488053929343841, 6.66380799495427026102804544071, 7.26103110883045301954338705360, 7.27710101114682377490844291281, 7.79294763549993325217619808678, 8.017637585006348520227328644935