Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x + 172 x^{2} + 267 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.476828619351$, $\pm0.574438732269$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2029896.2 |
Galois group: | $D_{4}$ |
Jacobians: | $210$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8364$ | $65439936$ | $496474728192$ | $3935047057779456$ | $31182191021822550924$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $93$ | $8257$ | $704250$ | $62717665$ | $5584143813$ | $496982803822$ | $44231328111693$ | $3936588737991169$ | $350356404005264970$ | $31181719930547041777$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=56 x^6+15 x^5+68 x^4+2 x^3+33 x^2+20 x+61$
- $y^2=37 x^6+82 x^5+27 x^4+67 x^3+76 x^2+88 x+5$
- $y^2=34 x^6+5 x^5+81 x^4+3 x^3+7 x^2+13 x+30$
- $y^2=10 x^6+58 x^5+78 x^4+59 x^3+31 x^2+29 x+83$
- $y^2=60 x^6+62 x^5+86 x^4+58 x^3+47 x^2+19 x+31$
- $y^2=55 x^6+24 x^5+x^4+69 x^3+80 x^2+8 x+42$
- $y^2=9 x^6+33 x^5+74 x^4+59 x^3+16 x^2+86 x+16$
- $y^2=78 x^6+11 x^5+10 x^4+67 x^3+12 x^2+8 x+17$
- $y^2=56 x^6+71 x^5+6 x^4+39 x^3+37 x^2+12 x+46$
- $y^2=17 x^6+63 x^5+69 x^4+3 x^3+51 x^2+5 x+26$
- $y^2=59 x^6+41 x^5+63 x^4+35 x^3+70 x^2+18 x+22$
- $y^2=35 x^6+77 x^5+x^4+65 x^3+73 x^2+13 x+56$
- $y^2=46 x^6+63 x^5+42 x^4+22 x^3+78 x^2+71 x+1$
- $y^2=84 x^6+48 x^5+78 x^4+43 x^3+82 x^2+36 x+76$
- $y^2=56 x^6+87 x^5+8 x^4+9 x^3+56 x^2+74 x+21$
- $y^2=57 x^6+83 x^5+35 x^4+27 x^3+29 x^2+73 x+75$
- $y^2=48 x^6+15 x^5+15 x^4+73 x^3+7 x^2+63 x+65$
- $y^2=72 x^6+69 x^5+8 x^4+32 x^3+60 x^2+50 x+2$
- $y^2=68 x^6+80 x^5+78 x^4+83 x^3+13 x^2+60 x+15$
- $y^2=x^6+53 x^5+62 x^4+42 x^3+4 x^2+50 x+76$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.2029896.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.ad_gq | $2$ | (not in LMFDB) |