| L(s) = 1 | − 3-s + 2·5-s + 9-s − 4·11-s − 2·15-s + 2·17-s − 4·19-s + 2·25-s − 27-s + 10·29-s + 8·31-s + 4·33-s − 4·37-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s + 2·49-s − 2·51-s + 2·53-s − 8·55-s + 4·57-s + 4·59-s − 4·61-s − 4·67-s + 16·71-s − 2·75-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 0.485·17-s − 0.917·19-s + 2/5·25-s − 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.696·33-s − 0.657·37-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 2/7·49-s − 0.280·51-s + 0.274·53-s − 1.07·55-s + 0.529·57-s + 0.520·59-s − 0.512·61-s − 0.488·67-s + 1.89·71-s − 0.230·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.387976757\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.387976757\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.0061293475, −13.4369643993, −13.2456686316, −12.5332555140, −12.2100256290, −12.0127678007, −11.2304506816, −10.6612128358, −10.4765159141, −10.0870875823, −9.68293166700, −9.01505965855, −8.46452091313, −8.11445027001, −7.51743354768, −6.84922420430, −6.40213341851, −5.99442248722, −5.34626481547, −4.93672789073, −4.42311929675, −3.50485885256, −2.64964239777, −2.14027662346, −0.896963152278,
0.896963152278, 2.14027662346, 2.64964239777, 3.50485885256, 4.42311929675, 4.93672789073, 5.34626481547, 5.99442248722, 6.40213341851, 6.84922420430, 7.51743354768, 8.11445027001, 8.46452091313, 9.01505965855, 9.68293166700, 10.0870875823, 10.4765159141, 10.6612128358, 11.2304506816, 12.0127678007, 12.2100256290, 12.5332555140, 13.2456686316, 13.4369643993, 14.0061293475