Properties

Label 4-48e3-1.1-c1e2-0-1
Degree $4$
Conductor $110592$
Sign $1$
Analytic cond. $7.05144$
Root an. cond. $1.62955$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 9-s − 4·11-s − 2·15-s + 2·17-s − 4·19-s + 2·25-s − 27-s + 10·29-s + 8·31-s + 4·33-s − 4·37-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s + 2·49-s − 2·51-s + 2·53-s − 8·55-s + 4·57-s + 4·59-s − 4·61-s − 4·67-s + 16·71-s − 2·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 0.485·17-s − 0.917·19-s + 2/5·25-s − 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.696·33-s − 0.657·37-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 2/7·49-s − 0.280·51-s + 0.274·53-s − 1.07·55-s + 0.529·57-s + 0.520·59-s − 0.512·61-s − 0.488·67-s + 1.89·71-s − 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(110592\)    =    \(2^{12} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(7.05144\)
Root analytic conductor: \(1.62955\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 110592,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.387976757\)
\(L(\frac12)\) \(\approx\) \(1.387976757\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.ac_c
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.a_ac
11$C_4$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.11.e_g
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \) 2.13.a_g
17$D_{4}$ \( 1 - 2 T + 18 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.17.ac_s
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.19.e_g
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \) 2.23.a_ac
29$D_{4}$ \( 1 - 10 T + 66 T^{2} - 10 p T^{3} + p^{2} T^{4} \) 2.29.ak_co
31$D_{4}$ \( 1 - 8 T + 46 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.31.ai_bu
37$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.37.e_ac
41$D_{4}$ \( 1 + 6 T + 2 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.41.g_c
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.ae_cc
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.47.ai_bu
53$D_{4}$ \( 1 - 2 T + 50 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.53.ac_by
59$D_{4}$ \( 1 - 4 T - 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.59.ae_ak
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.61.e_as
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.67.e_acg
71$D_{4}$ \( 1 - 16 T + 158 T^{2} - 16 p T^{3} + p^{2} T^{4} \) 2.71.aq_gc
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.a_bu
79$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.79.ai_eg
83$D_{4}$ \( 1 - 20 T + 214 T^{2} - 20 p T^{3} + p^{2} T^{4} \) 2.83.au_ig
89$D_{4}$ \( 1 + 6 T + 146 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.89.g_fq
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \) 2.97.a_ck
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.0061293475, −13.4369643993, −13.2456686316, −12.5332555140, −12.2100256290, −12.0127678007, −11.2304506816, −10.6612128358, −10.4765159141, −10.0870875823, −9.68293166700, −9.01505965855, −8.46452091313, −8.11445027001, −7.51743354768, −6.84922420430, −6.40213341851, −5.99442248722, −5.34626481547, −4.93672789073, −4.42311929675, −3.50485885256, −2.64964239777, −2.14027662346, −0.896963152278, 0.896963152278, 2.14027662346, 2.64964239777, 3.50485885256, 4.42311929675, 4.93672789073, 5.34626481547, 5.99442248722, 6.40213341851, 6.84922420430, 7.51743354768, 8.11445027001, 8.46452091313, 9.01505965855, 9.68293166700, 10.0870875823, 10.4765159141, 10.6612128358, 11.2304506816, 12.0127678007, 12.2100256290, 12.5332555140, 13.2456686316, 13.4369643993, 14.0061293475

Graph of the $Z$-function along the critical line