Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x + 146 x^{2} + 534 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.442272034565$, $\pm0.666065893655$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2420640.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $248$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8608$ | $64801024$ | $496410215584$ | $3936335610839040$ | $31181486775377446048$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $8178$ | $704160$ | $62738206$ | $5584017696$ | $496980535506$ | $44231354095584$ | $3936588855064126$ | $350356401342252000$ | $31181719932681862578$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 248 curves (of which all are hyperelliptic):
- $y^2=41 x^6+79 x^5+19 x^4+63 x^3+25 x^2+29 x+46$
- $y^2=5 x^6+9 x^5+7 x^4+63 x^3+83 x^2+82 x+41$
- $y^2=13 x^6+2 x^5+85 x^4+80 x^3+40 x^2+54 x+67$
- $y^2=88 x^6+12 x^5+30 x^4+82 x^3+17 x^2+x+37$
- $y^2=43 x^6+25 x^5+14 x^4+68 x^3+19 x^2+52 x+49$
- $y^2=68 x^6+86 x^4+76 x^3+43 x^2+35 x+55$
- $y^2=39 x^6+83 x^5+45 x^4+63 x^3+53 x^2+22 x+73$
- $y^2=47 x^6+7 x^5+36 x^4+3 x^3+88 x^2+71 x+36$
- $y^2=2 x^6+14 x^5+57 x^4+64 x^3+24 x^2+19 x+18$
- $y^2=15 x^6+5 x^5+32 x^4+x^3+41 x^2+25 x+15$
- $y^2=84 x^6+8 x^5+76 x^4+14 x^3+76 x^2+61 x+48$
- $y^2=71 x^6+59 x^5+55 x^4+40 x^3+38 x^2+52 x+16$
- $y^2=4 x^6+17 x^5+50 x^4+71 x^3+68 x^2+9 x$
- $y^2=38 x^6+31 x^5+18 x^4+52 x^3+13 x^2+29 x+82$
- $y^2=65 x^6+31 x^5+61 x^4+85 x^3+30 x^2+41 x+50$
- $y^2=72 x^6+12 x^5+72 x^4+5 x^3+35 x^2+61 x+15$
- $y^2=75 x^6+27 x^5+7 x^4+10 x^3+52 x^2+78 x+86$
- $y^2=17 x^6+53 x^5+13 x^4+57 x^3+72 x^2+2 x+4$
- $y^2=80 x^6+77 x^5+65 x^4+19 x^3+30 x^2+83 x+35$
- $y^2=83 x^6+59 x^5+35 x^4+63 x^3+51 x^2+28 x+75$
- and 228 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.2420640.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.ag_fq | $2$ | (not in LMFDB) |