Properties

Label 2.89.g_fq
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 146 x^{2} + 534 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.442272034565$, $\pm0.666065893655$
Angle rank:  $2$ (numerical)
Number field:  4.0.2420640.1
Galois group:  $D_{4}$
Jacobians:  $248$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8608$ $64801024$ $496410215584$ $3936335610839040$ $31181486775377446048$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $96$ $8178$ $704160$ $62738206$ $5584017696$ $496980535506$ $44231354095584$ $3936588855064126$ $350356401342252000$ $31181719932681862578$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 248 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.2420640.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ag_fq$2$(not in LMFDB)