Properties

Label 4-462e2-1.1-c1e2-0-10
Degree $4$
Conductor $213444$
Sign $1$
Analytic cond. $13.6093$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 2·7-s + 4·8-s + 9-s + 2·11-s − 4·14-s + 5·16-s + 2·18-s + 4·22-s − 12·23-s + 6·25-s − 6·28-s + 20·29-s + 6·32-s + 3·36-s − 4·37-s + 8·43-s + 6·44-s − 24·46-s − 3·49-s + 12·50-s + 8·53-s − 8·56-s + 40·58-s − 2·63-s + 7·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.755·7-s + 1.41·8-s + 1/3·9-s + 0.603·11-s − 1.06·14-s + 5/4·16-s + 0.471·18-s + 0.852·22-s − 2.50·23-s + 6/5·25-s − 1.13·28-s + 3.71·29-s + 1.06·32-s + 1/2·36-s − 0.657·37-s + 1.21·43-s + 0.904·44-s − 3.53·46-s − 3/7·49-s + 1.69·50-s + 1.09·53-s − 1.06·56-s + 5.25·58-s − 0.251·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(213444\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(13.6093\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 213444,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.234907127\)
\(L(\frac12)\) \(\approx\) \(4.234907127\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.822664775845247131815531688861, −8.734399327056068821213499579504, −7.74249612429138712743707138359, −7.72339303053252541131209387915, −6.69373326676767816887250497086, −6.46917181705411800265373292912, −6.35062410158064670794655966913, −5.56849277330524351488966193226, −5.01244554431640501263959251141, −4.25842178547984493307347569445, −4.22775784486927931972933466181, −3.34833436263269527102959669443, −2.84811781912171505509456779453, −2.18727745386797108535245912439, −1.12176628667720465571658579928, 1.12176628667720465571658579928, 2.18727745386797108535245912439, 2.84811781912171505509456779453, 3.34833436263269527102959669443, 4.22775784486927931972933466181, 4.25842178547984493307347569445, 5.01244554431640501263959251141, 5.56849277330524351488966193226, 6.35062410158064670794655966913, 6.46917181705411800265373292912, 6.69373326676767816887250497086, 7.72339303053252541131209387915, 7.74249612429138712743707138359, 8.734399327056068821213499579504, 8.822664775845247131815531688861

Graph of the $Z$-function along the critical line