| L(s) = 1 | − 2·7-s − 4·9-s + 2·11-s + 8·23-s − 4·25-s + 2·29-s − 14·37-s + 6·43-s − 3·49-s − 2·53-s + 8·63-s − 14·67-s − 12·71-s − 4·77-s + 16·79-s + 7·81-s − 8·99-s − 10·107-s + 6·109-s − 8·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | − 0.755·7-s − 4/3·9-s + 0.603·11-s + 1.66·23-s − 4/5·25-s + 0.371·29-s − 2.30·37-s + 0.914·43-s − 3/7·49-s − 0.274·53-s + 1.00·63-s − 1.71·67-s − 1.42·71-s − 0.455·77-s + 1.80·79-s + 7/9·81-s − 0.804·99-s − 0.966·107-s + 0.574·109-s − 0.752·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.887359545196304099484904925506, −8.638361035804768482259583366102, −7.83909227598610422557414657660, −7.46177519197212909096581217426, −6.80556290473534560865696341437, −6.44009600108618296906958642497, −5.97729441297205905806774808887, −5.36107620290136741018353422503, −4.98827781379714457214623966723, −4.18039420334984038326262975775, −3.47034852288868160363314980887, −3.09694402156436104391404520916, −2.43458424726861079488953110546, −1.36823413058364660960900109756, 0,
1.36823413058364660960900109756, 2.43458424726861079488953110546, 3.09694402156436104391404520916, 3.47034852288868160363314980887, 4.18039420334984038326262975775, 4.98827781379714457214623966723, 5.36107620290136741018353422503, 5.97729441297205905806774808887, 6.44009600108618296906958642497, 6.80556290473534560865696341437, 7.46177519197212909096581217426, 7.83909227598610422557414657660, 8.638361035804768482259583366102, 8.887359545196304099484904925506