Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 76 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.174313180039$, $\pm0.825686819961$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-5})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $195$ |
| Isomorphism classes: | 270 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6814$ | $46430596$ | $326941505086$ | $2253051914072976$ | $15516041181756694414$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6738$ | $571788$ | $47474326$ | $3939040644$ | $326942636802$ | $27136050989628$ | $2252292293908318$ | $186940255267540404$ | $15516041176307535378$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 195 curves (of which all are hyperelliptic):
- $y^2=26 x^6+55 x^5+23 x^4+51 x^3+29 x^2+17 x+57$
- $y^2=52 x^6+27 x^5+46 x^4+19 x^3+58 x^2+34 x+31$
- $y^2=37 x^6+69 x^5+45 x^4+58 x^3+9 x^2+12 x+42$
- $y^2=74 x^6+55 x^5+7 x^4+33 x^3+18 x^2+24 x+1$
- $y^2=3 x^6+59 x^5+22 x^4+80 x^3+13 x^2+4 x+31$
- $y^2=6 x^6+35 x^5+44 x^4+77 x^3+26 x^2+8 x+62$
- $y^2=76 x^6+49 x^5+31 x^4+80 x^3+47 x^2+5 x+8$
- $y^2=69 x^6+15 x^5+62 x^4+77 x^3+11 x^2+10 x+16$
- $y^2=68 x^6+35 x^5+x^4+9 x^3+46 x^2+47 x+24$
- $y^2=53 x^6+70 x^5+2 x^4+18 x^3+9 x^2+11 x+48$
- $y^2=46 x^6+46 x^5+43 x^4+57 x^3+14 x^2+45 x+43$
- $y^2=9 x^6+9 x^5+3 x^4+31 x^3+28 x^2+7 x+3$
- $y^2=75 x^6+65 x^5+67 x^4+54 x^3+48 x^2+23 x+37$
- $y^2=67 x^6+47 x^5+51 x^4+25 x^3+13 x^2+46 x+74$
- $y^2=67 x^6+68 x^5+10 x^4+20 x^2+60 x+38$
- $y^2=11 x^6+59 x^5+51 x^4+58 x^3+71 x^2+73 x+31$
- $y^2=22 x^6+35 x^5+19 x^4+33 x^3+59 x^2+63 x+62$
- $y^2=39 x^6+76 x^5+8 x^4+63 x^3+30 x^2+59 x+65$
- $y^2=78 x^6+69 x^5+16 x^4+43 x^3+60 x^2+35 x+47$
- $y^2=44 x^6+82 x^5+81 x^4+69 x^3+55 x^2+74 x+15$
- and 175 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-5})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.acy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.a_cy | $4$ | (not in LMFDB) |
| 2.83.aw_ji | $8$ | (not in LMFDB) |
| 2.83.w_ji | $8$ | (not in LMFDB) |