Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 53 x^{2} )( 1 + 2 x + 53 x^{2} )$ |
| $1 + 2 x + 106 x^{2} + 106 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.543861900584$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $48$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3024$ | $8491392$ | $22118506704$ | $62177640505344$ | $174898345121139024$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $3018$ | $148568$ | $7880078$ | $418221496$ | $22164860538$ | $1174709358424$ | $62259667505566$ | $3299763700466744$ | $174887471362191018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=37 x^6+43 x^5+12 x^4+50 x^3+20 x^2+37 x+28$
- $y^2=49 x^6+51 x^5+30 x^4+40 x^3+30 x^2+51 x+49$
- $y^2=36 x^6+21 x^5+2 x^4+26 x^3+26 x^2+51 x+16$
- $y^2=38 x^6+49 x^5+33 x^4+2 x^3+33 x^2+49 x+38$
- $y^2=36 x^6+2 x^5+47 x^4+27 x^3+15 x^2+39 x+47$
- $y^2=13 x^6+15 x^5+18 x^4+30 x^3+18 x^2+15 x+13$
- $y^2=5 x^6+27 x^5+41 x^4+20 x^3+51 x^2+14 x+41$
- $y^2=40 x^6+34 x^5+24 x^4+52 x^3+24 x^2+34 x+40$
- $y^2=47 x^6+2 x^5+17 x^4+24 x^3+24 x^2+48 x+43$
- $y^2=48 x^6+49 x^5+38 x^3+49 x+48$
- $y^2=48 x^6+23 x^5+11 x^4+31 x^3+47 x^2+34 x+21$
- $y^2=24 x^6+24 x^5+49 x^4+27 x^3+49 x^2+24 x+24$
- $y^2=15 x^6+30 x^5+38 x^4+10 x^3+13 x^2+19 x+43$
- $y^2=38 x^6+29 x^5+27 x^4+11 x^3+27 x^2+29 x+38$
- $y^2=10 x^6+18 x^5+10 x^4+28 x^2+33 x+16$
- $y^2=28 x^6+7 x^5+16 x^4+34 x^3+16 x^2+7 x+28$
- $y^2=6 x^6+5 x^5+51 x^4+43 x^3+19 x^2+14 x+10$
- $y^2=39 x^6+28 x^5+15 x^4+9 x^3+15 x^2+28 x+39$
- $y^2=26 x^6+16 x^5+x^4+17 x^3+24 x^2+47 x+31$
- $y^2=5 x^6+12 x^5+45 x^4+8 x^3+45 x^2+12 x+5$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.a $\times$ 1.53.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dy $\times$ 1.2809.ec. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ac_ec | $2$ | (not in LMFDB) |