Properties

Label 2.53.c_ec
Base field $\F_{53}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 + 53 x^{2} )( 1 + 2 x + 53 x^{2} )$
  $1 + 2 x + 106 x^{2} + 106 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.543861900584$
Angle rank:  $1$ (numerical)
Jacobians:  $48$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3024$ $8491392$ $22118506704$ $62177640505344$ $174898345121139024$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $3018$ $148568$ $7880078$ $418221496$ $22164860538$ $1174709358424$ $62259667505566$ $3299763700466744$ $174887471362191018$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53^{2}}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.a $\times$ 1.53.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{53}$
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dy $\times$ 1.2809.ec. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ac_ec$2$(not in LMFDB)